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Abstract

The Quadratic Assignment Problem (QAP) is a well known NP-hard combinatiorial
optimization problem. Instances of size greater than 30 are still a computational
challenge, being even hard to solve when dealing with sparse demand matrices.
Finding short formulations or ways of reducing the number of variables is a key
matter for achieving success. In this note, we present a simple rule for reducing
the number of variables of the Adams and Johnson (RLT level-1) formulation when
addressing instances with sparse matrices. The efficiency of the proposed approach
can be observed by the expressive reduction of the solution times.
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1 Introduction

The pure (homogeneous) Quadratic Assignment Problem (QAP) assigns fa-
cilities to locations minimizing the total transportation cost of intermediate
commodities. The QAP is a well known NP-hard combinatorial optimization
problem, where solving instance of size greater than 30 remains a computa-
tional challenge. Computer times are even worse when sparse instances are
considered.

Since the pioneering work of Koopmans and Beckmann [5] in 1957, many
authors have been striven for improving bounds. Among them, the work of
Adams and Johnson [2] is reputed to have the dominating linearization for
this problem, excepting the formulation of Ramakrishnan et al [6]. However,
the computational cost of obtaining these bounds is prohibitive.

Recently, Hahn et al [4] have demonstrated that the Adams and Johnson
linearization is equivalent to the formulation of the QAP using the level-1
reformulation-linearization technique (RLT) proposed by Adams and Sherali
[1]. They have also established the equivalence of Ramakrishnan et al [6]
formulation and the RLT level-2 linearization for QAP. Their formulation has
fewer variables and constraints than the traditional one.

In this note, we present a simple rule for reducing even further the number of
variables and constraints of the Adams and Johnson formulation when facing
sparse instances. The computational solution time is quite sensitive to the flow
matrix sparsity degree.

2 QAP Formulations

The model of the QAP is stated for a given the set K of n facilities, a set I

of n locations, and two n2 matrices representing, respectively, costs between
location pairs and demands between facility pairs. We also define intermediate
commodities transportation costs as bklcijxkixlj ∀k, l ∈ K, ∀i, j ∈ I, where
bkl is the demand between the facility pair kl, cij is the transportation cost
between the location pair ij, and xki (xlj) is the integer variable stating the
assignment of facility k (l) at location i (j). The x variables must constitute
an assignment, implying the following formulation:
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Min
∑

k∈K

∑

i∈I

∑

l∈K

∑

j∈I

bklcijxkixlj (1)

s. t.: (2)
∑

k∈K

xki = 1 ∀ i ∈ I (3)

∑

i∈I

xki = 1 ∀ k ∈ K (4)

xki ∈ {0, 1} ∀ k ∈ K, i ∈ I (5)

In 1994, Adams and Johnson derived a linearization for problem (1)-(5) that
is reputed to dominate the other MILP relaxations of QAP. The Adams and
Johnson formulation is stated as:

Min
∑

k∈K

∑

i∈I

∑

l∈K

∑

j∈I

bklcijykilj (6)

s. t.:

constraints (3) - (5)
∑

j∈I

ykilj = xki ∀ k, l ∈ K, i ∈ I, i 6= j, k 6= l (7)

∑

l∈K

ykilj = xki ∀ k ∈ K, i, j ∈ I, i 6= j, k 6= l (8)

ykilj = yljki ∀ k, l ∈ K, i, j ∈ I, i 6= j, k < l (9)

ykilj ≥ 0 ∀ k, l ∈ K, i, j ∈ I, i 6= j, k 6= l (10)

Recently, Peter Hahn et al [4] have demonstrated how the formulation (6)-(10)
is equivalent to a level-1 RLT linearization for QAP. They also have shown
how to eliminate constraints (9) yielding:
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Min
∑

k∈K

∑

i∈I

∑

l∈K

∑

j∈I|i6=j

bklcijykilj (11)

s. t.:

constraints (3) - (5)
∑

j∈I|j 6=i

ykilj = xki ∀ k, l ∈ K, k < l, i ∈ I (12)

∑

j∈I|j 6=i

yljki = xki ∀ k, l ∈ K, k > l, i ∈ I (13)

∑

l∈K|k<l

ykilj +
∑

l∈K|k>l

yljki = xki ∀ k ∈ K, i, j ∈ I, i 6= j (14)

ykilj ≥ 0 ∀ k, l ∈ K, k < l i, j ∈ I, i 6= j (15)

The formulation (11)-(15) has less n2 × (n−1)2

2
variables and constraints than

the original one, (6)-(10). One can see that the product of assignment variables
ykilj can be reinterpreted as a flow from facility k to l through arc ij, written
as fklij. This simple maneuver implies the following formulation:

Min
∑

(i,j)∈I2|i6=j

∑

(k,l)∈K2|k<l

[cijbkl + cjiblk]fklij (16)

s. t.:

constraints (3) − (5)
∑

j∈I|j 6=i

fklij = xki ∀ i ∈ I, ∀k, l ∈ K, k < l (17)

∑

i∈I|i6=j

fklij = xlj ∀ j ∈ I, ∀k, l ∈ K, k < l (18)

∑

l∈K|k<l

fklij +
∑

l∈K|k>l

flkji = xki ∀ k ∈ K, ∀i, j ∈ I, i 6= j (19)

fklij ≥ 0 ∀ i, j ∈ I, i 6= j, ∀k, l ∈ K, k < l

(20)

Constraints (17) can be seen as commodity flows that leave location i, while
constraints (18) can be seen as commodity flows that arrive at location j, for
a given kl pair. Constraints (19) assure that if facility k is placed at location
i, for each arc (i, j) or (j, i) only one facility l is attended on this link.

When facing a sparse demand matrix, the formulation (16)-(20) has a degen-
erate objective function, once it has unnecessary flow variables. Anstreicher
shows in [3] how the sparsity of an instance can be a major drawback for some
bounding schemes. Furthermore, most solvers, including the leading edge Ilog
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CPLEX, are specially sensitive to the number of variables in a given formula-
tion. Finding short formulations or ways of reducing the number of variables
is a key matter for achieving success. So the flow interpretation results on the
following rule.

3 The Flow Elimination Rule

In order to discard the flow variables, we define the set:

φ = {(k, l) ∈ K2|k < l and (bkl 6= 0 or blk 6= 0)}

Therefore, creating flow variables only in this scope. The definition of the set φ

avoids the creation of flow variables for kl pairs when both demand coefficients
are zero. So, the QAP for sparse demand matrix can now be formulated as:

Min
∑

(i,j)∈I2|i6=j

∑

(k,l)∈φ

[cijbkl + cjiblk]fklij (21)

s. t.:

constraints (3) − (5)
∑

j∈I|j 6=i

fklij = xki ∀ i ∈ I, ∀(k, l) ∈ φ (22)

∑

i∈I|i6=j

fklij = xlj ∀ j ∈ I, ∀(k, l) ∈ φ (23)

∑

l∈φ|k<l

fklij +
∑

l∈φ|k>l

flkji ≤ xki ∀ k ∈ K, ∀i, j ∈ I, i 6= j (24)

fklij ≥ 0 ∀ i, j ∈ I, i 6= j, ∀(k, l) ∈ φ (25)

Constraints (24) are a relaxed version of constraints (19). This is due to the
following fact: if we have no flow between facilities k and l placed at locations i

and j respectively, the equality does not hold anymore. Hence, the formulation
(21)-(25) is very compact and it does not have a degenerate objective function.
The efficiency of the proposed approach can be observed by the expressive
reduction of the solution times, as presented in section 4.

4 Computational Experience

We present on table 1 the results of the computational experiments based on
the set QAPLIB, a well established data set in the literature, where instances
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of size n varying from 6 to 20 have been selected.

The ILOG CPLEX 7.0 Concert Technology has been used to implement the
Adams and Johnson (RLT level-1) and the proposed reduced formulation.
The experiments are carried out in a SUN BLADE 100 workstation with a
500 MHz processor and 1 Gb of RAM memory.

Table 1
Computational results for the data set of QAPLIB

Instance Compact RLT level1 RLT level 1 [AJ94] Integer

name size lp bound time [s] bound quality lp bound time [s] bound quality solution

nug5 5 50.0 0 1.0000 50.0 1 1.0000 50

tai5a 5 12,902.0 0 1.0000 12,902.0 1 1.0000 12,902

nug6 6 86.0 0 1.0000 86.0 1 1.0000 86

tai6a 6 29,432.0 1 1.0000 29,432.0 1 1.0000 29,432

nug7 7 148.0 1 1.0000 148.0 3 1.0000 148

tai7a 7 53,976.0 1 1.0000 53,976.0 1 1.0000 53,976

nug8 8 202.6 6 0.9469 203.5 17 0.9509 214

tai8a 8 77,502.0 5 1.0000 77,502.0 7 1.0000 77,502

tai9a 9 93,501.0 26 0.9882 93,501.0 37 0.9882 94,622

lipa10a 10 473.0 50 1.0000 473.0 50 1.0000 473

scr10 10 26,659.0 12 0.9902 26,873.1 269 0.9982 26,922

tai10a 10 131,053.0 86 0.9706 131,098.0 160 0.9709 135,028

tai10b 10 1,172,043.4 47 0.9901 1,176,140.0 248 0.9936 1,183,760

chr12a 12 9,552.0 2 1.0000 9,552.0 725 1.0000 9,552

chr12b 12 9,742.0 1 1.0000 9,742.0 508 1.0000 9,742

chr12c 12 10,927.3 1 0.9795 11,156.0 1,068 1.0000 11,156

had12 12 1,621.5 1,633 0.9816 1,621.5 2,533 0.9816 1,652

nug12 12 522.7 308 0.9043 522.9 6,597 0.9047 578

scr12 12 29,766.5 59 0.9477 29,827.3 4,555 0.9496 31,410

had14 14 2,666.1 12,044 0.9788 2,666.1 14,778 0.9788 2,724

chr15a 15 9,456.5 3 0.9556 9,513.0 30,146 0.9613 9,896

chr15c 15 9,504.0 2 1.0000 9,504.0 3,622 1.0000 9,504

nug15 15 1,040.3 7,895 0.9046 1,041.0 131,923 0.9052 1,150

nug20 20 2,180.4 157,424 0.8484 2,181.6 2,310,985 0.8489 2,570

Table 1 shows some interesting results. It is clear that the Compact RLT level-
1 formulation produces gaps of same magnitude of the RLT level-1 [AJ94], as
can be seen on figure 2, however at a much cheaper computational cost, as
can be seen on figure 1.

A natural conclusion can be observed on table 2: the sparser the flow matrix
of an instance, the easier it is of solving it when applying the flow elimination
rule. We recall that the sparsity of a given instance is computed accounting
only the entries having both bkl and blk equal to zero. Hence, a full triangular
superior matrix has zero sparsity.
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Fig. 1. Computational time comparison between both formulations.

Furthermore, we observe that sparsity becomes relatively more important as
the problem size increases. The solution time improvement ratio is quite enor-
mous in some test problems, as can be seen on table 2, fourth column. This is
explained once any linear programming solver is very sensitive to the number
of variables, so when the elimination of a large number of useless flow varibles
is possible, one can expect a major impact on the computational times.

5 Conclusions

In this work we have presented a simple rule for improving the computational
times of RLT level-1 bounds for the Quadratic Assignment Problems with
sparse instances. This rule is based on the flow interpretation of the continuous
variables of the cited formulation.

The flow elimination rule can obtain bounds that are hundreds or even thou-
sands of times faster than the ones gotten by the traditional RLT level-1
formulation. Moreover, the proposed rule has not presented significant bound
degeneracy for the tested instances.
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Fig. 2. Bound comparison between both formulations.

As a future research, it is possible to derive a rule to discard some constraints
of the compact RLT level-1 formulation. The idea is to achieve a good balance
between the bound strength and its cost.
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