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Cell formation (CF) has received much attention from academicians and practitioners because of its strategic importance to
modern manufacturing practice. In this paper a sophisticated mixed-integer programming (MIP) model is proposed to simulta-
neously form manufacturing cells and minimize the cost of dealing with exceptional elements. Also, we illustrate how a fuzzy
mixed-integer programming (FMIP) approach can be used to solve the CF problem in a fuzzy environment, propose a new fuzzy
operator, and examine the impact of different membership functions and operators on computational performance. Our study
shows that FMIP not only provides a better and more flexible way of representing the problem domain, it also leads to improved

overall performance.

1. Introduction

Applying mathematical programming models to solve
real-world problems is a challenging task because deci-
sion makers find it difficult to specify goals and con-
straints exactly and because the parameters used in these
models cannot be estimated precisely. Over the past 25
years, fuzzy set theory has been applied to many dis-
ciplines, including operations research, control theory,
and artificial intelligence/expert systems, dealing with si-
tuations or problems involving ambiguities and fuzziness.
Fuzzy mathematical programming (FMP) is one area
where the use of fuzzy set theory has been explored
widely. For instance, FMP has been applied to problems
regarding transportation [1], location planning [2], project
networks [3], resource allocations [4], air pollution reg-
ulations [5], and media selection for advertising [6]. Al-
though there has been intense study of the application of
fuzzy set theory to industrial engineering [7] and to op-
erations management [§8], very few studies have attempted
to use FMP in the design of manufacturing systems. This
paper will focus attention on applying FMIP to the de-
sign of cellular manufacturing systems, specifically in
terms of cell formation (CF) problems.

Cell formation is the process of grouping parts with
similar design features or processing requirements into
parts families and the corresponding machines into ma-
chine cells. Over the past decade, the problem has re-
ceived much attention because of its strategic importance
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to modern manufacturing practice. Extensive review of
CF problems can be found, for example, in [9-11]. Most
studies, however, have focused on the process of forming
manufacturing cells. If any exceptional element (EE) ex-
isted, it was removed manually [9, 12] or dealt with after
initial cells were formed [13]. No study has attempted to
handle EEs automatically during manufacturing CF.
Furthermore, most studies have focused on using tradi-
tional analytical or heuristic methods to model the pro-
blem; a few studies have attempted to model the problem
in a fuzzy environment, but their scope has been limited.
Most studies form only part families [14-16] or form part
families and machine cells sequentially [17]. Other studies
apply only traditional approaches to fuzzy data [16], and
some studies deal only with fuzzy variables [15, 17]. No
study has attempted to deal with the CF problem with
fuzzy goals, fuzzy constraints, or fuzzy parameters. Fuzzy
constraints are the most important component of the CF
problem because most algorithms are more sensitive to
the number of cells that they can form and to the number
of machines or parts allowed in each cell; that is, if these
parameters are selected improperly, clustering results may
be unacceptable [9].

The purposes of this study are twofold: first, to develop
a more relatively sophisticated mixed integer program-
ming (MIP) model able simultaneously to form manu-
facturing cells and to minimize the cost of eliminating
EEs; secondly, to use FMIP to model CF problems in a
fuzzy environment. Because membership functions and
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operators tend to influence computational performance
[18, 19], this study also will assess the relative perfor-
mances of two different types of membership function.
An improved fuzzy operator will also be proposed. Its
performance will be evaluated and contrasted with that of
three other commonly used operators.

2. Notation used in the formulations
The following notation was used to model CF problems.

Index Set

i machine index; i =1,....,m
j vpartindex; j=1,...n

k cell index; k=1,...,c

[ index of membership functions; / =0, ...,c
s index of fuzzy constraints; s = 1, ...,c

Parameters
aij = 1 if part j needs to be processed by machine i;
0 otherwise
A; periodic cost of acquiring machine type i

C; periodic capacity of machine type i

D;  periodic forecast demand for part j

I incremental cost for moving a unit of part j
within two cells

NM  maximum number of machine types allowed in
each cell

P tolerance value for the fuzzy objective function
(cost)

P, tolerance values for the fuzzy constraints (NM)

P;  processing time of machine type i needed to
produce part j

Y parameter used in fuzzy modeling

S; incremental cost of subcontracting a unit of part

j for an operation

set of pairs (i, j) such that a;; = 1

utilization capacity of machine type i for parts j.

Value can be calculated from P; x D;/C;

Up(x) membership function of aggregated results

Us(x) sth membership function

7%  optimal solution using the maximum value of
NM

VA optimal solution using the minimum value of
NM

Decision Variables

IC;, =1 if cell k is formed; 0 otherwise

M. number of machines i dedicated to cell & for
producing part j

O;jx  units of part j to be subcontracted as a result of

machines type i not being available within cell £
O; number of machines type i needed to process
corresponding parts in machine cell
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R;x  number of machines type i to be dedicated in
cell k
Ujr =11if Xj =1 and Y = 0; 0 otherwise
Vig . =1if Yy =1 and Xy = 0; 0 otherwise
Xir =1 if machine i is assigned to cell £; 0 otherwise

Yy =l1if part j is assigned to cell k; 0 otherwise

Zijx  number of inter-cell transfers required by part j
as a result of machine type i not being available
within part cell £

A minimum value of all membership functions

o extra variables used in the fuzzy And operator

3. Traditional model

The proposed model is an extension of the model used in
[13], in which two major weaknesses can be found. First,
the CF stage must occur separately, before optimization
through elimination of EEs. The goodness of the results is
highly dependent on the quality of the clustering. Sec-
ondly, the model does not consider machine capacity
when accepting part transfers. The proposed model re-
medies both deficiencies. Not only is the best decision
arrived at regarding the assignment of parts and machines
to cells such that the total cost of dealing with EEs can be
minimized, but also the available capacity and the in-
vestment cost of the machines are considered. The needed
number of machines can consequently be determined and
minimized. The formulation is as follows:

Min ZZAR,k+Z > 1z,jk+z > 504 (1)

(i,j)eSP (i,j)eSP
subject to:
Z)(ik - 17 Vla (2)
k=1
d vu=1, Vj; (3)
k=1
> Xy <NM, Vi (4)
i=1
1 1 1
)(ik - ij +D Zl/k +D Ol]k +— UC. 11k I/;]k = 07
ij
V(i,j) € sp, Vk; (5)
> My < Ri, Vi, Vk; (6)
(i,)eSP
Oi< Y UC (1= V) +1, Vi (7)
(ij)ESP k
Py :
> D o ik < 0= D UG (=) Vi), Vis(8)
k (ij)esp ! (i.j)eSP k
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Xty Vi, Uge, Vg =0o0r 1; Ry, O = general integer.

)
Three types of cost associated with EEs are to be mini-
mized in (1). The first cost is that of duplicating a ma-
chine. This cost subsumes the purchase, maintenance,
salvage, and machine life. The second cost includes inter-
cell transfers for the EE. The last cost is that of sub-
contracting. Constraints (2) and (3) ensure that each
machine and part is assigned to only one cell. Constraint
(4) prevents the assignment of more than NM machines to
each cell. This constraint also prevents all machines and
parts from being assigned to a single cell. Constraint (5)
combines the two equations

Xie = Yy + U — Vi = 0, Y (i,
ljk +01/k + (C /Ptj) ijk =D (]ljka V(l,

and ensures that an EE either is an exceptional machine (a
machine to be duplicated) or an exceptional part (a part
to be transferred or subcontracted). Furthermore, the
constraint guarantees that the demand of exceptional part
j can be shared by the duplicated machine i, transfer
within cells, or subcontracting. Constraint (6) calculates
the number of machines of type i needed to be dedicated
within cell £ to producing the EEs, where M;j is a real
variable representing the utilization capacity of a machine
type i dedicated to process part j in cell k. Constraint (7)
determines the number of machine type i needed in each
cell. The constraint sums the utilization capacity of ma-
chine type i for all relative parts (Z (ijese UCi ), not the
EEs (1 — >, V). Constraint (8) ensures that the number
of inter-cell transfers between machines of type i do not
exceed the available machine capacity. The maximum
available capacity of machine type i (machine unit) for
the relative parts to be transferred is equal to C;/P;; times
the right-hand side of (8).

Jj) € SP, Yk and
j) € SP, Vk,

4. Fuzzy models

In a fuzzy environment, mathematical programming
models must take into consideration fuzzy constraints,
vague goals, and ambiguous parameters. Many FMP
approaches have been developed for these combinations
and can be classified into different categories according to
different criteria. For instance, vague versus ambiguous
[18, 20-28]; symmetric versus asymmetric [19, 21, 28-32];
and traditional versus interactive [18, 33]. A detailed
discussion of the FMP procedure can be found in [18, 19],
for example.

Although FMP is different from other fuzzy applica-
tions such as fuzzy inference and fuzzy ranking, two
factors — membership functions and fuzzy operators —
common to other fuzzy applications deserve attention.
Membership functions are used to incorporate fuzziness
or to represent the linguistic variables for applications of
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fuzzy set theory. Many types of membership function
have been used in practice [2, 18, 32, 34-36]: linear non-
increasing [3-5] and triangular [1, 6] are two of the most
popular functions in use. To manipulate the fuzzy num-
bers in fuzzy sets, a variety of fuzzy operators extended
from the traditional (crisp) mathematical operators have
been developed For instance, let 4 and B be two fuzzy
sets in X, the fuzzy sum C=A+B is defined as
C= {(x, g p(x0)) I € X} where i5(x) and pp(x) are the
membership functions of x in 4 and B and uy, 3(x) =
wy(x) + up(x) — uy(x) - pp(x). In FMP, fuzzy operators
are used to transform FMP to traditional MP so that the
FMP can be solved via traditional MP software. Table 1
summarizes the operators that often have been applied on
FMP. The first five operators have simple linear forms
after transformation. Their characteristics can be found
n [19, 34, 37, 38].

The aforementioned traditional model assumes that
objective functions and constraints can be defined pre-
cisely; however, in practice, it is quite difficult for the
decision maker to specify the exact goals and constraints
when modeling the problem. For example, the right-hand
side of constraint (4) is often fuzzy and can be expressed as

> Xu<NM, Yk or Y Xy=NM, Vk
i=1 i=1

(10)

According to Werners [31], (1) can be fuzzified as:

ZZAR,k+Z > 1iZi

(i, j)eSP

+Z Y S0z =7"-n.

(i, j)eSP

(11)

Here, the value of Z° is the feasible value of the best goal,
which can be obtained by solving the traditional model
with the maximum value of NM. Z! is the feasible value of
the worst goal, which can be obtained by solving the same
model with the minimum value of NM. To transform the
fuzzy model to a traditional formulation, two tolerance
values, P. and Py, must be determined in advance. P., for
(10), is normally determined by the decision maker, ac-
cording to problem characteristic or experience. Py for
(11) can be determined from the budget limit and its al-
lowance, or it can be set as a value equal to Z° subtracted
from Z!. Fuzzy objective function (11) and fuzzy con-
straint (10) then can be transformed to the conventional
formulation by means of a suitable operator. In this pa-
per, we estimated the P, values according to the average
machine cost and the percentage of EEs of each data set.
Two membership functions (linear nonincreasing and
triangular) and four operators (‘max-min’, ‘afid’, ‘add’,
and a newly proposed operator) will be examined. Ad-
ditionally, if the membership function is linear and non-
increasing, the transformation formula in Zimmermann
[19] will be used; otherwise, the formula in Yang and
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Table 1. Summary of common operators used in the FLP studies
Operator Formulation® Compensatory”  Format after References
transformation
‘Max-min’ Up = min Ug No Linear [1, 3-6]
‘Min-bound-sum’ Up=yminUs+ (1 -7y m1n< Z Us) Positive Linear [43]
‘Compensatory and’ Up = ymin Us + (1 — y) max Uy Positive Linear [44]
t
‘Fuzzy and’ (‘afid’) Up =yminUs+ (1 —7y)/(t+1) x Z Uy Positive Linear [38, 44]
5=0
t

‘Add’ Up = Z Us Negative Linear [5]

5=0

!

‘Product’ Up = H Uy Negative Nonlinear [16, 36]

521

t 1=y t v
y UD<H US> {1 - 101 - US)} Positive Nonlinear [43]

5=0 5=0

“The objective is to maximize Up.
*The definitions of compensatory and of negative compensatory are adapted from [37].
Ignizio [39] will be used. Consequently, there are eight ¢
cases needing to be examined for (10) and (11). The first Zlck > 2 (15)
two cases are the combinations of ‘max-min’ operator k=1
and different membership functions, cases 3 and 4, the m
combinations of the ‘and’ operator and different mem- ZXik > 2ICy, Vk; (16)
bership functions. Cases 5 and 6 are the combinations of =l
the ‘add’ operator and different membership functions. 0<i1<1. (17)

Cases 7 and 8 combine the proposed operator with dif-
ferent membership functions. The generic forms can be
found in Appendix A. Equivalent formulations for each
case are summarized below. Please note that, for each
case, complete formulation includes those equations no-
ted below as well as (2), (3), and (5)—(9).

Case 1:

‘Max-min’ operator and linear nonincreasing member-
ship function. The equivalent formulation can be ob-
tained as

Max 14 (12)
subject to
ZZAR1k+Z Z Ithk
(i,j)eSP
+3° N S0+ R <2+ Ry (13)
k  (i,j)eSP
> X+ P <NM + P, Yk (14)

i=1

Constraint (15) prevents the formation of fewer than two
cells, and constraint (16) prevents the assignment of fewer
than two machines in each cell formed. There, the IC;
variables in (15) and (16) are added either to allow a
lower-bound value of the number of machines in each cell
when there is a linear nonincreasing membership function
or to prevent the grouping of parts and machines into
exactly C cells when there is a triangular membership
function. Consequently, the number of cells permitted
ranges from 2 to C, and when linear nonincreasing
membership is used, the number of machines allowed in
each cell ranged from 2 to NM + P,.

Case 2:

‘Max-min’ operator and triangular membership function.
The equivalent LP formulation consists of (12)-(15), (17),
and (18):

ZX,-k — NM x ICy — AP, > —P., Yk.
i=1

(18)



Modeling and analysis of manufacturing cell formation problem

The difference between cases 1 and 2 is that the triangular
membership function requires one additional constraint
(18) to define the minimum value of Y | Xy.

Case 3:

The ‘and’ operator and the linear nonincreasing mem-
bership function. The equivalent LP formulation consists
of (19), (15), (16), and (20)—(23).

Max o + ( l—/ IZ ! (19)
subject to
Z ZAiR[k + Z Z LiZij
k i k  (i,j)eSP

+ Z Z SiOui + aPy + Py < Z° + Py;  (20)

k  (i,j)eSP
> Xi+oaP+ouP, <NM+P, Yk o (21)

i=1

o+ <1, 1=0,...c; (22)
>0, 0<a<l, p<lL (23)

Because no simple rule can be applied to decide the value
of y, determining it becomes a major bottleneck in the use
of the ‘aid’ operator. An experiment has been conducted
to identify the nature of the y value. Results are discussed
below.

Case 4:

The ‘and’ operator and triangular membership function.
The equivalent LP formulation can be expressed as (24),
(15), (20), (21), (25), (26), and (23).

l 2¢
M 1 - 24
oot (1= > (24)
subject to
a+o; <1, [1=0,..,2; (25)
Z)(l‘k—NMXICk—AXR'_achkXPFZ])HVk? (26)

i=1
Case 5:

‘Add’ operator and linear nonincreasing membership
function. The equivalent LP formulation consists of (27),
(15), (16), (28), and (29):

Min (ZZA R,k+z " 5z
(i.j)eSP
+3 > S04 -

a) [ni35
k (ij)eSP

subject to:

(27)
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> Xu— Sk <NM, Vk; (28)
i=1

Sg<P., s=1,..c. (29)

Case 6:

‘Add’ operator and triangular membership function. The
equivalent LP formulation consists of (30), (15), (28),
(31), and (32):

Min (ZZA R,k+2 ZSPI»ZW
l/E
+Z Z SOljk
k

)/P0+Z— (30)

(i/)ESP
subject to
> X+ Sek = NM x ICy, Yk (31)
i1
S <P, s=1,..2c. (32)
Case 7:

The proposed operator (denoted as ‘add-min’) and linear
nonincreasing membership function. The proposed op-
erator applies the ‘min’ operator for the fuzzy constraints.

Thus, the aggregated membership function becomes
Up = O.S(UG—i—minsles). (33)

The range of Up is [0, 1]. The model after aggregation is a
linear form, and the compensatory property is better than

the ‘max-min’ and ‘add’ operators. The equivalent
transformed formulation is
Max Ug + 4 (34)
subject to
1 (AR Y S 1
i (ij)eSP
+Y 0> S0 - )/PO, (35)
k (i,j)eSP

1—( X,-k—NM>/P,zx, V. (36)
i=1

If we insert constraint (35) into (34), the fuzzy objective
function becomes (37). The fuzzy constraints include

(14)—(17).

Min ZZAR,k+Z > LiZip

(i.j)eSP

+Z > S0 — iby.

(i,j)eSP

(37)
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Case 8:

The proposed operator and triangular membership
function. The objective function of the equivalent LP
formulation is the same as in (37), and the constraints are
(14), (15), (17), and (18).

5. Data sets for numerical computations

To evaluate the performance of the proposed fuzzy
models, four data sets with different percentages of EEs
are used. Here, the percentage of EEs is defined as their
number divided by the total number of elements in a data
set. Data set I, adapted from [13], has the highest per-
centage of EEs (28.6%) and can be formed into two or
three cells. Table 2 lists the processing time of each part,
the costs involved, the part demand, and the machine
capacity of this data set. Data set II, with an intermediate
EE percentage (18.8%), also can be formed into two or
three cells. The machine/ part matrix of this data set was
from [40], but the other data were generated randomly by
a computer program on the basis of the mean value and
the standard deviation of data set I. The percentage of
EEs of data set III is 3.3%, the lowest percentage. Two,
three, or four cells can be formed in this data set. The
machine/part matrix of data set III was from [12], and
the other related data were also generated randomly. The
percentage of EEs of data set IV is 6.87%. Three or four
cells can be formed in this data set. The machine/ part
matrix of data set IV was from [41], and the other related
data were also generated randomly. For the first three
data sets, the maximum number of machines allowed
(NM) in each cell is set as ‘no more than four’ or ‘around
four’. Thus, for the traditional model, the right-hand side
of (5) is a fixed number ‘four’; under the fuzzy environ-
ment, however, we can use fuzzy intervals to represent
these numbers. We have also relaxed the NM value into
‘six’ in the first three data sets for the crisp model (i.e.,

Table 2. Numerical values for data set I
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non-fuzzy model) to see its possible impacts on the so-
lution quality. Similarly, the NM value for data set IV was
first set at ‘nine’ and relaxed to ‘twelve’ for exploration
purposes.

6. Computational results

All models were solved by running the LINDO (linear
interactive and discrete optimizer) package on a PC with
Intel’s 120 MHz Pentium processor. Clustering perfor-
mances were measured in terms of EE numbers, executing
CPU time, and total costs of dealing with EEs. Table 3
summarizes computational results from ten different
cases. Cases 1 to 8 already have been discussed. Case 9 is
the proposed traditional (crisp) CF model and case 10 is a
two-phase sequential model, in which an MIP (whose
objective is to minimize the number of exceptional ele-
ments) was first used to form the manufacturing cells, the
modified formulation (to consider capacity restriction for
part transfers) from [13] was then used as a post-
processor to deal with the exceptional elements. The last
two cases were included for purposes of comparison.
Several observations can be made on the basis of the
information in Table 3.

First, despite the fact that the sequential approach and
the proposed traditional (crisp) model are more compu-
tationally efficient (i.e., consume less CPU time), their
clustering results cannot compete with the proposed fuzzy
models. For instance, under the comparable settings (i.e.,
formulations with same NM restriction and cell number),
the sequential approach and the proposed crisp model
always resulted in a larger number of exceptional ele-
ments and significantly higher cost of dealing with EEs
(see the first row of cases 9 and 10 of Table 3). If we
carefully design the fine-tuning process, the solution of
the traditional model can improve significantly. For in-
stance, in data sets I and II, its solutions are even better

Parts
Machines 1 2 3 4 5 6 7 8 9 10 Ai($) C;

1 2.95 0 2.2 0 0 0 0 0 0 4.61 50784 2000
2 2.76 5.18 1.89 3.89 0 5.14 0 0 0 0 67 053 2000
3 5.54 4.29 0 0 0 0 0 0 0 0 43 944 2000
4 291 0 0 1.97 2.59 4.01 0 2.7 0 0 67 345 2000
5 0 0 0 4.28 0 4.51 0 0 0 0 42 414 2000
6 1.92 0 0 0 0 0 2.23 0 5.52 0 75225 2000
7 0 0 0 0 34 0 1.16 4.72 0 2.49 52741 2000
8 0 5.32 0 0 0 0 0 3.75 3.85 0 63 523 2000
9 0 0 0 0 0 0 4.04 0 0 1.83 50 632 2000

Si($) 4.20 4.30 3.50 4.40 5.00 3.90 4.40 4.60 5.00 5.00

D; 32128 27598 20651 11340 18707 17040 46196 45384 16409 22000

I($) 3.70 2.80 2.80 3.30 2.80 3.50 2.80 2.60 3.40 3.20
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than the best of fuzzy models. Although solutions of the
sequential approach are improving, most of them yet
remain the worst. Furthermore, the sequential approach
requires one to predetermine the manufacturing cells and
its solution is highly dependent on the quality of the cell
formation. If the clustering result is good, it will consume
less CPU time and result in a lower cost; otherwise, the
computational efficiency may deteriorate. This indicates
that our proposed crisp model is more convenient and
robust than the sequential approach.

Secondly, although with some trial and error a better
solution may be obtained using the proposed crisp model,
the process is very subjective, tedious, and time-con-
suming. A general rule-of-thumb for obtaining a good
solution is to set the NM value larger (see the contrast of
cases 9 in Table 3). However, with a larger NM value,
there is a risk of assigning machines and parts into a
single cell. On the contrary, with a good operator such as
the proposed ‘add-min’ (case 8), the use of the fuzzy
model is very straightforward. It can flexibly adjust the
NM values and cell number to find a good solution in a
single run, thus avoiding, tedious and time-consuming
trial and error. Also, the processing time of a good fuzzy
model is always less than that of the proposed crisp
model. The time advantage of using a fuzzy model over
the sequential and traditional models becomes significant
once the problem size and the tolerance value of the
constraints (i.e., NM value and number of cells) becomes
bigger, as it would take quite a long time to complete each
run. This is evident from cases 9 and 10 of data set IV.

Thirdly, whereas the computational CPU times of the
fuzzy models differed from case to case, clustering
results, except for case 5 of data set 111, were far better
than those obtained for the traditional crisp model
under the same (default) settings. This can be seen from
the fact that EE number and total costs were smaller for
all fuzzy models except case 5. The clustering results of

Table 4. Results of varying y values for the ‘and’ operator
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case 5 actually were the same as those for the traditional
model.

Fourthly, even though the ‘max-min’ operator was
used most often in the literature, its performance was
surprisingly unacceptable. Not only did it require the
longest time to process, clustering results (in terms of cost
and of EE number) were also always worse than those of
the other operators. For instance, after more than 48
hours it still had not finished the computations for data set
IV. Also, more than 24 hours and 16 hours were required
to complete cases 1 and 2 of data set I, respectively, and
the costs of dealing with EEs were far higher than those in
the other fuzzy cases. Although the situation is improved
in data set III, the results were still unsatisfactory. For
instance, nearly 2 hours were required for using the linear
nonincreasing membership function, and 25 minutes when
a triangular membership function was used.

Fifthly, although the ‘afid’ operator often arrived at
good clustering results and required shorter CPU time
than the ‘max—min’ operator, the performance time of the
former was still far worse than that of either the ‘add’ or
the proposed operators. Meanwhile, determining a
proper y value was difficult. Therefore, an experiment was
needed to determine the best possible values of y. Table 4
summarizes the results of using data set II. According to
the table, the best y values for cases 3 and 4 are 0.8 and
0.2, respectively. Although they are not shown, the best
values for data set I were 0.2 and 0.1, and for data sets 111
and IV were 0.3 and 0.8. The best value for y clearly
depended on the data set. Nevertheless, when the best y
values are used for comparison, the ‘afid’ operator still
performed worse in terms of CPU time than the ‘add’
operator or the proposed operator.

Sixthly, although applying the ‘add’ operator can
shorten CPU time, this operator has two basic weak-
nesses: (1) it is time-consuming to obtain the objective
function because all membership functions must be

Data set 11 Data set 11
(linear nonincreasing membership function) (triangular membership function)
v value NMc*  Executing No. of  Cost of NMc*  Executing No. of  Cost of
CPU time EEs dealing with CPU Time EEs dealing with
(H:M:S) EE ($) (H:M:S) EE ($)
0.1 4,5) (0:32:18) 3 168 200 4,5) (0:06:41) 3 168 200
0.2 4,5) (0:58:32) 3 168 200 4,5) (0:05:32) 3 168 200
0.3 4,5) (0:56:49) 3 168 200 4,5) (0:12:12) 3 168 200
0.4 4,5) (0:58:13) 3 168 200 4,5) (0:14:54) 3 168 200
0.5 4,5) (0:29:01) 3 168 200 4,5) (0:23:38) 3 168 200
0.6 4,5) (1:01:57) 3 168 200 4,5) (0:26:25) 3 168 200
0.7 4,5) (0:51:52) 3 168 200 4,5) (0:32:32) 3 168 200
0.8 4,5) (0:14:23) 3 168 200 4,5) (0:43:17) 3 168 200
0.9 4,5) (1:21:45) 5 168 200 4,5) (0:45:53) 3 168 200

“number of machine types in each cell.
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summed in the objective function, and (2) clustering re-
sults are affected by constraints because all membership
functions of the constraints are put in the objective
function. Poor clustering results can be seen from data set
III of Table 3; the CF result of case 5 is the worst.

Seventhly, the proposed operator (‘add-min’) is ob-
viously the most efficient no matter which membership
function is used. For example, in data set I, the worst case
of using the proposed operator was still better than the
best cases of using the other three operators. It also is true
that the proposed operator with any membership func-
tion consistently performed better than the conventional
formulations did, and other operators often required
more CPU time than the traditional model.

Finally, the triangular membership function performed
better than the linear nonincreasing function for model-
ing the CF problems for one of two reasons: (1) it sets a
lower bound on constraints, and thus the possible range
of solutions was narrowed; (2) the triangular function
may be more appropriate for representing the fuzzy
constraints of the number of machines.

7. Sensitivity analysis

To verify the sensitivity of these computational results,
two follow-up analyses were performed. The first ex-
amines the impact of y on the computational performance
of the ‘and’ operator. Table 4 summarizes results from
data set II. As shown, though CPU times depend upon y
values, clustering results are the same. Thus, the selection
of y affects CPU time but not the clustering result.

The second analysis concerned the impact of Py on the
computational performance of the proposed operator.
The best case was chosen from the first three data sets
(case 8), and the Py value ranged from § P, to 3 P for each
case. Results are summarized in Table 5. As can be seen,
although Py varied, clustering results from three different

Tsai et al.

data sets remained the same. Moreover, CPU time for the
triangular membership function was always shorter than
that of the linear nonincreasing membership function.
The proposed operator is therefore robust, and the per-
formance of the triangular membership function is better
than that of the linear nonincreasing membership function.

8. Concluding remarks

This paper proposes an efficient mathematical program-
ming formulation and corresponding FMIP models si-
multaneously to form manufacturing cells and to
minimize the cost of eliminating EEs. Two membership
functions with four operators, including a newly pro-
posed operator, were applied and their results compared.
Sensitivity analyses also were performed to test the ro-
bustness of the fuzzy models and of the proposed op-
erator. From the computational analyses and sensitivity
tests, a number of conclusions can be drawn.

1. Choosing appropriate values for the number of cells
and the number of machines or parts allowed in each cell
(NM) is vital to obtain a good solution to CF problems.
When the number of parts and the machines needed (i.e.,
problem size) are relatively small, one may be able to use
trial and error to find an acceptable solution without
consuming much time. However, once the problem size
becomes bigger, trial and error is not an effective ap-
proach. In this case, the fuzzy MP is a straightforward
and more effective alternative.

2. Not only does the FMP approach provide a better
and more flexible way of representing the problem do-
main than the traditional MP or sequential approaches, it
also leads to improved clustering performance. The CPU
time required for fuzzy models, however, depends on the
operator used. Clearly, the proposed operator always
outperforms the traditional model whereas the perfor-
mance of other operators depends on the data used.

Table 5. Impact of different Py values on the performance of the proposed operator

Data set 1 Data set 11 Data set 111
(Py= 38166 000) (Py=38121 000) (Py= 3209 660)
Py value  No. of  Executing No. of Cost of No. of Executing No. of Cost of No. of Executing No. of Cost of
cells CPU time EEs dealing cells CPU time EEs dealing  cells CPU time EEs dealing
(H:M:S) with (H:M:S) with (H:M:S) with
EE ($) EE ($) EE ($)
%Po 2 (0:06:21) 7 301 638 2 (0:03:54) 3 168 200 3 (0:13:42) 2 67 777
1P 2 (0:08:08) 7 301 638 2 (0:02:42) 3 168 200 3 (0:11:57) 2 67 777
Py 2 (0:08:28) 7 301 638 2 (0:02:08) 3 168 200 3 (0:10:31) 2 67 777
P 2 (0:15:46) 7 301 638 2 (0:02:16) 3 168 200 3 (0:15:46) 2 67 777
0Py 3 (0:21:06) 9 441221 3 (0:06:28) 6 289465 4 (0:37:22) 2 209 660

(Traditional model)




Modeling and analysis of manufacturing cell formation problem

3. Performances (in terms of both clustering results and
CPU time) of the popularly used ‘max—min’ operator are
worse than those of the other operators, no matter which
membership function is used. Thus, a frequently used
method may not necessarily be the best.

4. Although the ‘and’ operator has the best compensa-
tory property, its performance is worse than that of the
proposed operators. The compensatory property therefore
is not necessarily the only major factor needing to be con-
sidered when operators are selected for the CF problem.

5. The proposed operator always outperformed the
other three operators, regardless of the measure used. It
also was more stable and robust than the others, re-
gardless of membership function or Py values.

6. The triangular membership function was a more
appropriate membership function for solving the CF
problem than the linear nonincreasing type of member-
ship function.

Using MP to model CF problems has several advantages
for practical applications. First, with a specific objective
in mind, the MP can be used to obtain an optimal
solution that aligns with that objective. Secondly, the
analytical approaches found in the literature are
predominately heuristic [9-11]. Without optimal
solutions, it would be difficult to judge heuristics. Still
another benefit of using MP is to clarify the embedded
logic so that an efficient heuristic can be developed or an
improved optimal algorithm created. The use of
conventional MP for modeling, however, faces the ‘curse
of dimension’ because as problem size increases,
computation intensifies. Furthermore, MP models
require their parameters and constraints to be precisely
specified. In practice it is very difficult for decision makers
to do that. Using FMP for modeling can resolve the
second mentioned problem. The dimension problem
remains unsolved as yet; therefore, efficient heuristic
procedures or computational algorithms need to be
developed before one can enjoy the benefits of FMP.
Also, although this paper has demonstrated through
examples that FMIP can be applied successfully to solve
the designated problem, several issues require further
study. For instance, the fuzziness considered in this paper
was limited to fuzzy constraints. Several other parameters
such as demand, processing time, inter-cell transfer cost,
and subcontracting can be fuzzified further. Other ob-
jectives such as machine utilization and total similarity
coefficient also can be considered as a fuzzy equation, or
the problem can become a multiple fuzzy linear objective
function.
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Appendix A. Generic forms of selected fuzzy
operators

Notation Used:

The following notation is used in the transformation of
fuzzy models:

Ug(x): the membership function of the objective func-
tion. Because the linear nonincreasing function is
more suitable, Us =1 — (f(x) — Z°)/P), where
Py is the tolerance value for f(x).

Uc,(x): the membership function of the constraints. Two

function types are considered in this paper:

(1) Non-increasing function: Ug,=1— (4X — b)/
P,., where P, is the tolerance value for the fuzzy
constraints.

(2) Triangular function. The following two for-
mulae are used: Ug, =1 — (4X — b)/P, for the
upper bound and Ug, =1 — (b — AX)/P, for the
lower bound.

1. ‘Max-min’ operator:
Proposed by Zadeh [42], this operator uses ‘min’ to define
the intersection of an aggregated rule, i.e.,

Up(X) =Usg(X) NU¢q,(X) = Us(X)nUc,(X). (Al)
The aggregated membership function becomes

To find the maximum value of Up(x), the model can be
defined as

Max 4 (A3)
subject to
2 < Us(x); (A4)
A< Ue(X), Vs (A5)
0<i<. (A6)

2. ‘Min-bound-sum’ operator:
Proposed by Luhandjula [43], this operator uses (A7) as
the aggregation rule:

(A7)
It then uses the ‘min’ operation to represent the inter-

section and the ‘bounded-sum’ operation to represent the
union; the aggregated membership function thus becomes

UD =7y X UGr\Q + (1 — ’)/) X UGuC1~

t
Up =yminUs + (1 —y) min(l,z Us).
5=0

(A8)

The equivalent form after using the operator is

Max yi+ (1 —y)u (A9)
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subject to
7 < Ug(x); (A10)
A< Ugq(x), VJ; (Al1)
u<l; (A12)
u< UG+ZUC,(x); (A13)
]
0<i<1; yp<I1. (A14)

3. ‘Compensatory and’ operator:

This operator uses the same aggregation rule as the ‘min-
bound-sum’ operator, but it then uses the ‘min’ operation
to represent the intersection and the ‘max’ operation to
represent the union. Thus the result of Up(x) becomes

Up = ymin Us + (1 — y) max Us. (A15)

The crisp equivalent model after using this operator is:
subject to Max 4+ (1 = y)u (Al6)
2 < Ug(x); (A17)
7 < Uo(x), V) (A18)
u < Ug + MYy; (A19)
u<Ucg+MY, VI (A20)
zt: Ys <t (A21)

5=0
0<A<I; 9<1,Y%=0,1; M isa large number.

(A22)

4. ‘Aid’ operator:

To address the deficiencies of aggregation rule (A7),
Werners [38] suggested modification of the membership
function of the resulting fuzzy set as

t
Up=yminUs+ (1-7)/(t+1) x> Us.  (A23)
S=0

The equivalent model after this operator is used becomes

Max/l—l—(l—r)/(t+1)><icxs (A24)
5=0
subject to
A4 oy < Ug(x); (A25)
A+ < Ug(x), VI (A26)
Ato, <1, Vs (A27)
Ayag >0; o< 1. (A28)
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5. ‘Add’ operator:

Proposed by Sommer [5], this operator first modifies the
fuzzy constraints AX < b into AX —S; < band S; <0. As
a result, the membership function of the constraint set
becomes Ug, =1 —8;/P.. Therefore all membership
functions are summed up in the objective functions; i.e.

1
Max Ug + Y U, (A29)
=1
The equivalent LP model can be obtained as
t
Min (f(x) = Z°) /Py + Y _Si/P. (A30)
subject to =1
AX —§; <b, Vj (A31)
S <P, Vj (A32)
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