LSEVIER

Robotics and Computer-Integrated Manufacturing 20 (2004) 143150

Robotics
and
Computer-Integrated
Manufacturing

www.elsevier.com/locate/rcim

Minimum makespan task sequencing with multiple shared resources

Massimiliano Caramia®*, Paolo Dell’Olmo®, Riccardo Onori€

& Istituto per le Applicazioni del Calcolo IAC-CNR “Mauro Picone”, Viale del Policlinico, 137 - 00161 Rome, Italy
® Dipartimento di Statistica Probabiliti e Statistiche Applicate, Universita di Roma *‘La Sapienza”, Piazzale Aldo Moro, 5 - 00185 Rome, Italy
¢ Dipartimento di Informatica, Sistemi e Produzione, University of Rome “Tor Vergata”, Via del Politecnico, 1 - 00133 Rome, Italy

Abstract

In this paper we study the general problem of sequencing multiple jobs, where each job consists of multiple ordered tasks and
tasks execution requires simultaneous usage of several resources. In particular, the case of an automatic assembly cell is examined.
NP-completeness results are given. A heuristic is designed and evaluated.

© 2003 Elsevier Ltd. All rights reserved.

MSC: 68M20; 68Q17; 68Q25; 68W40; 90B35; 90C27

Keywords.: Scheduling; Robotic cells; Job shop heuristic algorithm; Complexity analysis

1. Introduction

A substantial amount of recent research has been
directed towards the development of industrial robots.
The bulk of this work has dealt with electromechanical
capabilities, sensing devices and computers controls.
Relatively little research has investigated the operational
problem associated with application of this technology
[1-5]. We investigate one operational problem which is
encountered in applications, in which a robot is used to
tend a number of machines. Such an application would
arise, e.g., when machines have been organized into a
machine cell to implement the concept of group
technology [6—11]. The cell would be used to produce
multiple set of parts at prespecified production rates.
The feasibility of assigning one robot to perform the
tasks necessary for tending all the machines, so that
parts are produced at specified production rates, is an
important operational problem. In fact, the resolution
of this problem determines the number of robots that
might be necessary to tend machines in a manufacturing
system and hence the investment required to robotize
tending activities.

*Corresponding author. Fax: +39-06-44-04-306.
E-mail addresses: caramia@iac.rm.cnr.it (M. Caramia),
paolo.dellolmo@uniromal.it (P. Dell’Olmo), onori@disp.uniroma2.it
(R. Onori).

0736-5845/% - see front matter © 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.rcim.2003.10.003

These kinds of problems were first introduced by
Asfahl [12]. A summary of the related literature can be
found in [13,14]. In particular, in [13] the authors find
the optimal sequence of moves for a two-machine robot-
centred cell producing a single part-type, and solve the
part sequencing problem for a given one-unit robot
move cycle in a two-machine cell producing multiple
part-types. Hall et al. [14] showed that the optimal
solution to the multiple part-types problem in a two-
machine cell is not generally given by a one-unit cycle.
They develop an O(n*), where n is the number of parts,
time algorithm that jointly optimizes the robot move
cycle and part sequencing problems. The latter algo-
rithm was improved later by Aneja and Kamoun [2]
with one of O(nlogn) complexity.

Also, Blazewicz et al. [I5] provided a summary
of the related literature and described a line for
machining castings for truck differential assemblies in
the form of a three-machine robotic cell where a robot
has to transfer heavy mechanical parts between large
machines.

Descriptions of interesting applications were pro-
vided, e.g. by Hartley [16]. Complexity issues were
discussed by Wilhelm [17], and Crama and Van De
Klundert [18], that provided a proof that a basic version
of the problem is strongly NP-complete, and described a
polynomial time algorithm for minimizing cycle time
over all one-unit cycles in an m-machine cell producing a
single part-type in a robot-centred cell.

144 M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

Hall et al. in [4] considered a three-machine cell
producing multiple part-types, and proved that, in two
out of the six potentially optimal robot move cycles for
producing one unit, the recognition version of the part
sequencing problem is unary NP-complete. Moreover,
they have shown that the general part sequencing
problem not restricted to any robot move cycle in a
three-machine cell is still intractable.

Levner et al. [19] addressed a cyclic robot scheduling
problem in an automated manufacturing line in which a
single robot is used to move parts from one workstation
to another, with the goal of optimizing the cycle length.
For this problem they proposed an algorithm of
complexity O(m’logm) where m is the number of
machines.

Many of the results and algorithms in the literature
are devoted to robotic flow-shop scheduling problems
(e.g., see [12,14,15,20]). However, the robotic cell
configuration is very flexible: the robot can easily access
the machines in any order, thus producing a large
variety of products in the form of a job-shop (e.g., see
[21-24)).

In this paper we concentrate on the latter class of
problems, studying the general problem of sequencing
multiple jobs where each job consists of multiple
ordered tasks and tasks execution requires simultancous
usage of several resources [25].

The remainder of the paper is organized as follows. In
Section 2 we formally describe the problem. The
complexity of the problem is analyzed in Section 3. A
heuristic algorithm is described in Section 4, and finally
in Section 5 we present computational results.

2. Problem definition

Let us consider a cell composed of M machines
configured to produce a batch of parts. Part p, p =
1, ..., P, requires N, tasks. Let p; denote the jth task for
part p. Task p; takes 7, time units to complete. We allow
the general condition that a task requires concurrent
usage of more than one cell resource during its
execution. Let S, be the set of resources required for
task p;. The objective is to determine the schedule for all
tasks of all parts so as to minimize the makespan. Note
that the mainstream of research in robotic scheduling is
devoted to two classes of production performance
measures. The first is the makespan which addresses
the case of a finite part set where one is interested in
minimizing the maximum completion time of these parts
(e.g., see [23,26-28]). The other class of models (which is
not addressed in this paper) assumes that the part set is
infinite and attempts to minimize the long run cycle time
of the schedule, which is the same as maximizing the
throughput rate (e.g., see [13]).

As an example of this model, we examine an assembly
cell of M — 1 machines plus a material handling robot.
The robot will be modelled as machine M. Each part has
a processing time associated with each machine. In
addition, the robot is needed to load a part on a machine
and then to unload the part after the production task
has been performed. In our model, each production task
is divided into three tasks, namely Load, Make, and
Unload. The Load and Unload tasks require both the
machine and the robot. The Make operation would
normally require only the machine. The formulation
also permits the case where the robot is needed to hold
the part while certain production tasks are performed.
This problem can be easily extended to the case of
multiple material handlers, each assigned to a specific set
of machines. Note that the solution must take into
account precedence restrictions. For instance, we cannot
unload until we have loaded and performed the Make
task.

This is an example of operational problems
associated with the application of industrial
robots, used to tend a number of machines that have
been organized into a machine cell. The cell is used to
produce a set of parts at production rates specified by
managers. The time required to tend a machine,
may be different for each machine according to its
location and orientation in the cell, and to the part to be
processed. All machines in the cell are dependent on a
single robot, so the sequence in which tending tasks are
performed may be critical and force certain machines to
be in idle.

Let us denote the Load, Make and Unload operations
of part p requiring machine i with L,, M,, U} (the
machine index i will be omitted when not necessary).
Moreover, we shall refer to the problem of
scheduling Load, Make and Unload operations for the
set of parts in order to minimize makespan as the LM U
problem.

As an example of LMU problem, in Fig. 1 is shown
a schedule, for three parts and two making machines.
In particular, the robot is indicated with R, and the
machines with m; and m;, respectively. Moreover, the
Make operation for part 2, namely M2, requires
resource R.

my

R| 1| 12 vz 2o | oz

my M}

Mo M? M?
—t—

Fig. 1. An example of LMU problem.

M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150 145

3. NP-completeness result

We show that LM U problem with general processing
times on four machines is NP-hard by a transformation
from 3-Partition, which is known to be strongly NP-
complete (see [29]), to our problem. The 3-Partition
problem is defined as follows.

3-Partition problem: Given a set A = {a,,ay, ...,as.}
of 3z integers such that ZZI a; =zBand B/4<a;<B/2
for i=1,...,3z, can A be partitioned into z disjoint
subsets, Ay, Aa, ..., Az, such that > a; = B for each
k=1,2,...,27

a,-eAk

Theorem 1. The LMU problem with m = 4 is strongly
NP-complete.

Proof. For a given instance of the 3-Partition problem
let us define a corresponding instance of our problem
with 5z parts. Let there be 2z parts requiring machine 1,
z parts requiring machine 2, z parts requiring machine 3,
and z parts requiring machine 4. Recalling the definition
of B in the statement of the 3-Partition problem, let the
processing times be as follows:

o [l =1, M; =B, Up1 =1,p=1,...,2z

L Lp:ap722s M[?:B*ap72z+2> U =dp-2:, P =
2z41,...,3z;

o L";:apfk’ M;:B_ap73z+2> U3:ap73za P =
3z4+1,...,4z;

° L;:ap_4z, M;:Bfap_4z+2, U4:ap_ s D=
4z+1,...,5z.

If the 3-Partition problem has a positive answer, then
we can construct a schedule of length Y = 2z(B + 2) as
shown in Fig. 2.

Now, we are going to show that there is a positive
answer to 3-Partition if there exists a feasible schedule
with length less than or equal to Y. We observe that the
value of the makespan to schedule in any order the 2z
parts requiring machine 1 is ¥ = 2z(B + 2). This partial
schedule has no idle times on machine 1 and has 2z idle
times on the robot all of length B. The total time
required to perform the Load and Unload operations of
the remaining 3z parts is 2zB. Note that a feasible
schedule for the remaining parts can be obtained

1 1_—?—_, 2:(B+2)
R0 B | B [2 (Ut [y van [0 [ut [0g] - Uk
my Ml1 M}
ma ‘ M3, |
ma ‘ M3, |
my ‘ ML, |

Fig. 2. An optimal schedule with Y = 2z(B + 2).

scheduling in any order the Load operations of parts
on machines 24, on an idle time of the robot. The Make
operation can start as soon as the Load is completed.
Unload operations can be performed in the successive
robot idle time in the same order than the corresponding
Load operations. In a schedule of length Y the robot
must have no idle times. This is possible if the sum of the
Load (Unload) operations of parts requiring machines
2—4 in each robot idle time is equal to B, that is if it exists
a 3-Partition of the set A. Thus the problem is strongly
NP-complete. [

4. The heuristic

In the following, we describe a heuristic algorithm
(namely LMUA) which finds a feasible solution to our
scheduling problem.

First, we observe that an active schedule can have idle
times either on one of the machines or on the robot
which cannot be eliminated trivially. The robot can be
idle when all machines are simultaneously processing a
Make task. A machine m; may be idle, waiting for either
a Load or an Unload task to be performed, because the
robot is busy tending another machine. Second, for any
feasible schedule the maximum completion time is the
completion time of the last Unload operation.

The LMUA algorithm proposed is a single pass
heuristic in which the loading—unloading sequence and
the corresponding schedule are determined once. A list
containing the sequence of Load—Make—Unload tasks is
built considering any order of the part types. At the
beginning the robot R loads all machines. Make
operations can start immediately after the preceding
Load is performed. Successively the robot unloads the
machine which ended first the Make task.

In the generic stage of the algorithm the first
unselected task in the list is examined. If it is a Make
operation it can be scheduled immediately after the
loading. Otherwise, the first Load—Unload operation in
the list of remaining tasks which tends the machine
which has been idle for the longest time is selected. The
following is a pseudo-code description of algorithm
LMUA.

Algorithm LMUA. Step 1: Consider an instance with
M — 1 machines, one robot (modelled as machine
M) and Z parts.

1.1. Take any ordering of all the parts (assume the
order 1,...,72);

1.2. Build the list of tasks:
LT = {LK, M}, UK, LK, M, ... LK, ME, UEY;

1.3. Build the list of tasks Make that require the
resource robot: LTR = {Mlk| part i requires
the robot during the Make on my};

146 M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

1.4. Build the 1list of processing times:

PT = {pL"apM"’pU" ,PU"}

1.5. Build the list of the instants of time at
which the machines are available:
AT = {Aty, Aty, ..., Aty};

1.6. Initialize the current scheduling time at
t=0;

1.7. Initialize the list of the tasks that can be
processed at the current ¢ with all the Load
tasks: LTA = {LF, Lk, ...,L'}};

1.8. Build the list reporting the instants of time
at which the tasks in list LT could start
their execution: FTA = {FIMA FlUk . FIU/(}'

1.9. Set the values of the variables in FTA equal
to infinite.

Step 2: While LT #0 or LTA#(do:

2.1. Scan tasks in list LTA4 and
2.1.1. if there exists a task Make that at time
t requires a machine my that is avail-
able according to list AT then go to
Step 3; otherwise
2.1.2. if the robot is available at time ¢
and there exists either a task Load
whose corresponding Make operation
requires a machine which is available,
or a task Unload, then go to Step 4
(tie breaks choosing the Load or
Unload task waiting for more time in
the list).
2.2. If there does not exist a task obeying Step
2.1.2 or Step 2.1.3, then:
2.2.1. Increase t =1+ 1;
2.2.2. Update lists LTA and LT, by moving
tasks from LT to LTA4 according to FTA.

Step 3:

3.1. Schedule the Make task selected starting from
t on the required machine;

3.2. Set equal to infinite the variable in AT
associated with the machine handling the Make
task.

3.3. Update in FTA the earlier starting time of
the Unload task associated with the processed
Make task, setting it to the finishing time of
the latter;

3.4. Delete from LTA the processed Make task.

35. Sett=1t+1;

3.6. Go to Step 2.

Step 4: 1f the selected task is a Load (whose Make
task does not require the robot) or an Unload,
then:

4.1. Process the task;

4.2. Update the instant of time Aty at which the
robot will be available again according to
the processing time of the task executed; set
t to this latter value.

4.3. If a Load task has been selected, then update
in FTA the earlier starting time of the Make
task associated;

4.4. If an Unload task has been selected, set to
t+ 1 the time at which the machine which have
processed its predecessor Make task will be
available; update the instant of time A7y at
which the robot will be available again
according to the processing time of the task
executed; update f accordingly.

4.5. Delete from LTA the processed task;

4.6. Go to Step 2.

If the selected task is a Load task such that the
following Make task requires the presence of the
robot (as shown in list LTR), then:

4.7. Process the task Load and immediately after
the following task Make;

4.8. Update the variable in list A7 indicating
when the robot will be available again
(i.e., after an interval of time equal to
the sum of the processing times of the
Load and the Make operations), while set
the availability of the machine which has
processed the Make task equal to infinity
after this Make operation has been per-
formed;

4.9. Update the variable in list FAT of the
earlier starting time of the corresponding
Unload task, i.e., ¢ plus the processing
times of the Load and the Make operations
performed, say p;« and p,«, respectively;

4.10. Update t =t + px i|—pM_k; I

4.11. Delete from LTA the Load task;

4.12. Delete from LT the Make operation.

4.13. Go to Step 2.

Step 5: Return the makespan: Cuay =1

In Fig. 3 we show an application of LM UA algorithm
with four parts: Make operations for parts 1 and 3
require machine m;; Make operations for parts 2 and 4

m;

R| 13| L} AIAIEN

my M} M}
—t —

Fig. 3. An application of LMUA algorithm.

M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

require machine m;; moreover, Make operation for
part 2, namely M, also requires resource R.

In order to determine the computational complexity
of the LM UA algorithm, note that, for a given instance
of Z parts, there are 3Z tasks and:

Step 1: the lists can be constructed in O(Z);

Step 2: the cycle while is repeated at most 3Z times,
and the task selection requires at most 3Z comparisons;

Step 3: runs in O(1);

Step 4: can be processed in O(1);

Step 5: runs in O(1);

Hence, for a given instance of the LMU problem,
denoting with Z the size of the input, LM UA algorithm
has a worst case complexity O(Z?).

5. Computational results

In this section we present some computational
experiments with LMUA algorithm on randomly
generated problems. We considered several cell config-
urations with me[4, 10] machines and one robot tending
all the machines. For each configuration we considered
an increasing number of jobs n€[10, 80]. Note that, for
instance, 80 jobs correspond to 240 tasks. Processing
times for each loading and unloading operations are
generated randomly, using a uniform distribution in the
range [20-70] time units. Processing times of Make
operations are generated randomly using a uniform
distribution in the range [120-360] time units. We
considered different scenarios associated with a prob-
ability p, that a generic part requires the robot
during the Make operation equal to 0, 0.1, 0.2, 0.3,
and 0.4. The algorithm implementation was done in
WINDOWS/C environment on a AMD Athlon PC
running at 900 MHz.

Results are summarized in the following tables, which
reports, for each cell configuration, the values of the
makespan depending on the number n of jobs. Each
table is associated with a scenario corresponding to a
probability p,.

First, let us consider a scenario in which jobs
do not require the resource robot during the Make
operation (Table 1). Observe that, for a given m,
the makespan increases as n increases, while it
decreases, for a given n, as the number of machines m

Table 1
Scenario with p, =0

147

increases. To evaluate the behaviour of the makespan
we report the chart in Fig. 4.

The makespan value, given a fixed number m of
machines, seems to be linearly dependent on the number
of jobs. For a certain range of the number of jobs
(ne[10, 30]), the trends are very similar, and it seems that
the number m of machines does not affect Cyay. As n
increases, instead, the trends are well distinguished, and
the difference between the makespan values is much
more observable when m passes from 4 to 6, than when
it passes from 6 to 8§ or 10.

Now we analyze the behaviour of the makespan
referring to the increase of the number m of the
machines, for a given n. Fig. 5 shows how Cpy
decreases proportionally as the number m increases.
Moreover, from Table 1 it is easy to see that when the
number of jobs passes from n = 30 to 40 the variation of
the associated makespan values is higher than in the
other cases.

14,000

12,000 /4,';
=

10,000

——m=4

8,000

—a—m= 6

Cmax

6,000

4,000 /
2,000«—/

0

—2—m=8

—>—m = 10

10 20 30 40 50 60 70 80
Jobs

Fig. 4. Trends of the makespan as the number 7 of jobs increases.

13,000

12,000 —

11,000

10,000
9,000
8,000
7,000
6,000
5,000
4,000

—o—n =50
—=—n =60

—a—n=70

Crmax

—%—n =80

4 6 8 10
Machines

Fig. 5. Trends of the makespan as the number m of machines
increases.

pr=0 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 1977.9 3265.5 4655.9 6774.6 8110.6 9300.4 10711.1 12077.3
6 1681.8 2733.4 4157.2 5460.4 6673.2 8117.8 9633.8 11220.8
8 1460 2712.1 3784.2 5400.4 6660 8014 9054.3 10482
10 1438.1 2678.2 3723.2 5314.5 6638.7 7754.5 8698.9 10458.3

148 M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

Table 2

Scenario with p, = 0.1

pr=0.1 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 2069.9 3486.6 5118.2 7300 8923.4 9999.7 11690.6 13615.2
6 1747.8 3096.8 4536 6292.1 7830.5 9298.7 11094.8 13057.5
8 1534.3 3077.5 4487 6193.8 7510.2 8952.5 10382.5 12008.9
10 1506.4 2969.3 4322 6125.6 7503.8 8771.4 10138.7 11849.9

Table 3

Scenario with p, = 0.2

pr=02 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 2152.5 3674.4 5320.9 7808.6 9428.6 10962.4 12574.6 14435.3
6 1818.3 3458.4 5143.6 7109.3 8806.4 10647.6 12018.1 14319
8 1775.3 3373.7 4954 6761.6 8430.1 10336.6 11880 13752
10 1591.9 3367.3 4919.1 6651.7 8283.1 9914.6 11270.6 13356.7

Table 4

Scenario with p, = 0.3

pr=03 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 2301.7 3743.1 5611.7 8289 10223 11656.9 13882.7 15894.9
6 1929.2 3644.8 5462.2 7798.4 9358.6 11496.9 13212 15787.6
8 1821 3465.1 5440.8 7341.7 9207.9 10969.7 12786.3 15046.8
10 1760.1 3412.8 5092 7252.4 9048.8 10923.3 12089.6 14451

Table 5

Scenario with p, = 0.4

pr=04 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 2383 4134 6073.6 9009.7 10859.4 12837.6 14857.8 17176.5
6 2024.3 3960.9 5876.7 8243.3 10232.2 12491.2 14268.5 16624.1
8 1837.3 3671.6 5734.9 7969.9 9644.2 11775 13719.8 15950.3
10 1815.5 3603.2 5406.4 7700.9 9577.2 11424.9 13693.4 15296

Finally, we study what happens if the probability
pr that a job requires the robot during the Make
operation is greater than zero. Tables 2-5 summarize
such results.

Note that as p, increases Cp,x decreases proportion-
ally. The chart in Fig. 6 shows that the makespan values
increase proportionally with the probability p, and the
number of jobs n.

The chart in Fig. 7, instead, shows that the variation
of the makespan, when the probability p, increases, is
not proportional to the number m of machines, for a
given n. In fact, it can be seen how the influence of p, on
the makespan tends to decrease as m increases.

Note that the maximum CPU time (in seconds) spent
by the algorithm was 2.67, found for the combination
(r =0.4,m = 6,n = 80), whereas the average running
time was 0.38.

A final analysis is devoted to the possible efficiency
improvement of the robotic cell. In particular, we
examine whether is more profitable to reduce the
processing times of Make operations, improving the
machines efficiency, or to reduce the processing times
for loading and unloading operations, modifying the
robot configuration.

First we analyze, in the case p, = 0, what happens if
the range of the uniform distribution for the processing

M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

18,000
16,000 -//;
14,000
12,000 e s p,=0
O 8,000 == —#—p, =02
6,000 —>—p,=03
4,000 —°—p, =04
2,000
0
10 20 30 40 50 60 70 80
Jobs

Fig. 6. Makespan values, for a given m, as n and p, increase.

10,000
8,000 — S ——p,=0
£ 7000 ;\'\ —=—p,=0.1
’ - —e— 3
o \o\ —&—p, = 0.2
6,000 — —%—p, =03
5,000 —o—p.=04
4,000

10
Machines

Fig. 7. Makespan values, for a given n, as m and p, increase.

Table 6
Reducing processing times of Make operations

149

times of Make operations is decreased of 30%, i.e., from
[120 — 360] to [120-268] time units. Table 6 summarizes
the results obtained in this new scenario, and Table 7
reports the percentage of reduction of Cpay.

Now we analyze what happens if the range of the
uniform distribution for the processing times of Load
and Unload operations is decreased of 30%, i.e., from
[20-70] to [20-55] time units. Table 8 summarizes the
results obtained in this case, and Table 9 reports the
percentage of reduction of Cpyax.

It is easy to observe that a decrease of the processing
times in both cases brings a reduction of Cp,,x even if the
latter is not proportional to the former. In fact, the
maximum reduction obtained is 19.89% when proces-
sing times of loading and unloading operations are
decreased, and 19.10% when processing times of Make
operations are decreased instead.

6. Conclusions

We studied the general problem of sequencing multi-
ple jobs where each job consists of multiple ordered

pr=0 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 1600.1 2781.3 3831.6 57353 6806.3 7877.1 8862.9 10284.7
6 1412.1 2481 3707.8 5022.4 6300.3 7630 8586.4 10150
8 1263.9 2409.8 3585.1 4948.5 6274.4 7480 8405.4 9343.2

10 1210.7 2392.1 3459.2 4918.7 6256.2 7290.3 8082.4 9900.3

Table 7

Percentage reduction of Cpax

pr=0 « Jobs (n) —

Mac. (m) 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%) 70 (%) 80 (%)
4 19.10 14.83 17.70 15.34 16.08 15.30 17.25 14.84
6 16.04 9.23 10.81 8.02 5.59 6.01 10.87 9.54
8 13.43 11.15 5.26 8.37 5.79 6.66 7.17 10.86

10 15.81 10.68 7.09 7.45 5.76 5.99 7.09 5.34

Table 8

Reducing processing times of Load and Unload operations

pr=0 « Jobs (n) —

Mac. (m) 10 20 30 40 50 60 70 80
4 1833.9 3071.5 4312.1 6273.3 7639.3 8816.5 10015.8 11228.9
6 1567.7 2400.4 3607.3 4847.7 5467.2 6682 7717.9 9035.2
8 1334.5 2398.5 3264.2 4475.5 5458.9 6653.9 7527.2 8697.5

10 1301.5 2378.7 3138.8 4298.5 5429.5 6354 7097.6 8415.5

150

Table 9
Percentage reduction of Cyax

M. Caramia et al. | Robotics and Computer-Integrated Manufacturing 20 (2004) 143—150

=0 « Jobs (n) —

Mac. (m) 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%) 70 (%) 80 (%)
4 7.28 5.94 7.38 7.40 5.81 5.20 6.49 7.02
6 6.78 12.18 13.23 11.22 18.07 17.69 19.89 19.48
8 8.60 11.56 13.74 17.13 18.03 16.97 16.87 17.02

10 9.50 11.18 15.70 19.12 18.21 18.06 18.41 19.53

tasks and tasks execution requires simultaneous usage of
several resources. The case of an automatic assembly cell
is examined. The NP-completeness in the strong sense of
the problem is proved for an automatic assembly cell
with four machines. A heuristic algorithm is proposed.
For this we give computational results for an assembly
cell with different number of machines and one robot.
The procedure at each iteration selects a task, based on
the partial schedule obtained for the parts that had
already been loaded for the assembly process. That
characteristic of the proposed algorithm indicates that
the presented approach can also be applied in on-line
scenarios as well as in dynamic scheduling environment.

Further research will be devoted to the extension of
this approach to different cell configuration, such as the
case in which a task requires k additional resources out
of a set of m available ones.

References

[1] Agnetis A, Pacciarelli D. Part sequencing in three-machine
no-wait robotic cells. Oper Res Lett 2000;27:185-92.

[2] Aneja YP, Kamoun H. Scheduling of parts and robot activities in
a two-machine robotic cell. Comput Oper Res 1999;26(4):
297-312.

[3] Brauner N, Finke G. Optimal moves of the material handling
system in a robotic cell. Int J Prod Econom 2001;74:269-77.

[4] Hall NG, Kamoun H, Sriskandarajah C. Scheduling in robotic
cells: complexity and steady state analysis. Eur J Oper Res
1998;109:43-65.

[5] Kats V, Levit VE, Levner E. An improved algorithm for cyclic
flowshop scheduling in a robotic cell. Eur J Oper Res
1997;97:500-8.

[6] Agnetis A. Scheduling no-wait robotic cells with two and three
machines. Eur J Oper Res 2000;123(2):303-14.

[7] Agnetis A, Arbib C, Lucertini M, Nicolo F. Part routing in
flexible assembly systems. IEEE Trans Robotics Automation
1990;6(6):697-705.

[8] Agnetis A, Lucertini M, Nicolo F. Flow management in flexible
manufacturing cells with pipeline operations. Manage Sci
1993;39(3):294-306.

[9] Agnetis A, Macchiaroli R. Modelling and optimization of the
assembly process in a flexible cell for aircraft panel manufactur-
ing. Int J Prod Res 1998;36(3):815-30.

[10] Askin RG, Standridge CR. Modelling and analysis of manufac-
turing systems. New York: Wiley; 1993.

[11] Van De Klundert J. Scheduling problem in automated manu-
facturing. Dissertation no. 96-35, Faculty of Economics and

Business Administration, University of Limburg, Maastricht,
1996.

[12] Asfahl CR. Robots and manufacturing automation. New York:
Wiley; 1985.

[13] Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W.
Sequencing of parts and robot moves in a robotic cell. Int
J Flexible Manuf Systems 1992;4:331-58.

[14] Hall NG, Kamoun H, Sriskandarajah C. Scheduling in robotic
cells: classification, two and three machine cells. Oper Res
1997;45(3):421-39.

[15] Blazewicz J, Kubiak W, Sethi SP, Sorger G, Srikandarajah C.
Sequencing of parts and robot moves in a robotic cell. Int
J Flexible Manuf Systems 1992;4:331-58.

[16] Hartley J. Robots at work. Amsterdam: North-Holland; 1983.

[17] Wilhelm WE. Complexity of sequencing tasks in assembly cells
attended by one or two robots. Naval Res Logist 1987;34:
3447-63.

[18] Crama Y, Van De Klundert J. Robotic flowshop scheduling

is strongly NP-complete. In: Klein Haneveld WK,
Vrieze OJ, Kallenberg LCM, editors. Ten Years
LNMB. Amsterdam, The Netherlands: CWI Tract 122; 1997.
p. 277-86.

[19] Levner E, Kats V, Levit VE. An improved algorithm for cyclic
flowshop scheduling in a robotic cell. Eur J Oper Res
1997;97:500-8.

[20] Crama Y, Van De Klundert J. Cyclic scheduling of identical parts
in a robotic cell. Oper Res 1997;45:952-65.

[21] Glass CA, Shafransky YM, Strusevich VA. Scheduling for
parallel dedicated machines with a single server. Naval Res
Logist 2000;47:304-28.

[22] Hall NG, Potts CN, Sriskandarajah C. Parallel machine schedul-
ing with a common server. Discrete Appl Math 2000;102(3):
223-43.

[23] Hertz A, Mottet Y, Rochat Y. On a scheduling problem in a
robotized analytical system. Discrete Appl Math 1996;65:
285-318.

[24] Jeng WD, Lin JT, Wen UP. Algorithms for sequencing robot
activities in a robot-centred parallel-processor workcell. Comput
Oper Res 1993;20(2):185-97.

[25] Baker KR. Introduction
New York: Wiley; 1976.

[26] Chu C, Proth JM. Single machine scheduling with chain
structures procedence constraints and separation time windows.
IEEE Trans Robotics Automation 1996;12(6):835-44.

[27] Kise H. On an automated two-machines flowshop scheduling
problem with infinite buffer. J Oper Res Soc Jpn 1991;34(3):
354-61.

[28] Kise H, Shioyama T, Ibaraki T. Automated two-machines
flowshop scheduling: a solvable case. IIE Trans 1991;23(1):
10-6.

[29] Garey MR, Johnson DS. Computers and intractability: a guide to
the theory of NP-completeness. San Francisco: W.H. Freeman;
1979.

to sequencing and scheduling.

	Minimum makespan task sequencing with multiple shared resources
	Introduction
	Problem definition
	NP-completeness result
	The heuristic
	Computational results
	Conclusions
	References

