
Petri Net Models for Manufacturing Systems

Zden�ek Hanz�alek

Department of Control Engineering, Karlovo n�am. 13

Czech Technical University in Prague

121 35 Prague 2, Czech Republic

hanzalek@rtime.felk.cvut.cz

Abstract

This paper presents an experimental laboratory

setup aimed at creating a
exible manufacturing sys-

tem for use in teaching real-time control. The machine

models (robots, conveyors, etc.) are self-contained

elements with their own intelligence, communicating

with a master computer. A supervisor program run-

ning on the master computer is implemented by a

real-time operating system, enabling the dynamic cre-

ation of processes. The supervisor program is fully

parameterized, with parameters specifying manufac-

turing subtasks of all machines and synchronization

among them. This makes the control system modu-

lar and
exible. A manufacturing task is speci�ed by

Petri nets that are automatically decomposed into a

set of unique P-invariant generators. The choice of

concurrent processes corresponding to P-invariants is

done semi-automatically to re
ect the physical tenor

of the manufacturing system.

1 Introduction

Five and half years of full-time study at the Czech

Technical University is divided into three periods. The

basic stage, which gives students theoretical princi-

ples of electrical engineering (namely, mathematics

and physics). This stage is completed with the �rst

state examination and its average duration is about 4

semesters.

The second period of study ends with the Bache-

lor's degree. A set of obligatory subjects provides ba-

sic ground for student's knowledge in a speci�c disci-

pline, such as control engineering. Beside subjects ori-

ented towards theory of control and towards electronic

systems, there is a set of courses dealing with the use

of computers in control engineering. These courses

are supported by laboratories such as Logic Systems,

Computers for Control and Operating Systems for

Control. Optional courses from all-departmental o�er-

ings complete the curriculum structure with subjects

from other areas. Graduates of bachelor study submit

Figure 1: A
exible manufacturing system

their project work and receive the title of Bachelor,

after examinations.

The third and last part of full-time study at the

Department of Control Engineering is to obtain the

title of Enginner. In this period, students choose

among many elective courses of their specialization

(e.g. Control Systems, AI, Robotics, Mechatronics,

Biocybernetics). Laboratories of Distributed Control,

Modern Control Engineering (microcontrolers, PICs,

PLCs, XLINXs) and Design of Control Systems (In-

touch, Control Panel, etc.) are supporting the courses

related to real-time control. At the end of the en-

gineering period, students submit their diploma the-

sis and take a �nal state examination covering three

main subjects: Theory of Control, Computers, and

Electronic Systems.

Students coming to our labs are already familiar

with programming (Pascal, C, low-level languages),

so they can fully concentrate on conceptual aspects of

systematic design. They are taught the basic princi-

ples of real-time control (real-time requirements, inter-

rupt system, synchronous/asynchronous events han-

dling, etc.), using simple physical models (decoding in-

cremental sensor signals, generating waveforms, etc.)

in the laboratory of Computers for Control. In the two

next laboratories, Operating Systems for Control and

Distributed Control Systems, we use a
exible manu-

facturing system, whose elements are described brie
y

in this article.

The material related to real time is organized in a

modular fashion, which allows its use in a variety of

courses o�ered by the Department. Below, one such

module is described, based on Petri nets formalism.

This is followed by a presentation of an experimental

setup and a summary.

2 Real-Time and Concurrency

To understand the concept of real-time require-

ments, students are taught the basic principles, �rst.

In the real-time applications, a computer is connected

directly to the physical equipment and is dedicated to

controlling that equipment. Consequently, the system

must meet response requirements that are mandated

by the equipment itself, rather than those being dic-

tated by the computer. The requirement to meet ex-

ternally imposed deadlines is at the heart of what is

termed a real-time system. The de�nition of a real-

time system states that it has to respond to externally

generated events within a speci�ed and �nite interval.

Consequently, the software must be designed to meet

these response time requirements [3].

A characteristic of a computer supervising a dis-

tributed system is that many activities within it pro-

ceed in parallel. For example, some parameters must

be sampled and controlled at a very fast rate, whereas

other parameters need only be sampled once per sec-

ond. Logically, those two operations proceed in par-

allel, while of course the CPU executes them in an

interleaved fashion. Similarly, controlling several I/O

devices at once usually results in some parts of the

control software waiting for the devices to complete

an operation while other devices, having �nished their

operations, are being serviced.

Whether recognized or not, this parallelism, or con-

currency, adds a major complication to the software.

To avoid all kinds of problems, programmers must take

care of mutually exclusive access to shared resources,

signaling one task by another task or by an interrupt

handler, and sending messages from one task or an

interrupt handler to another task.

A multitasking operating system (OS) usually pro-

vides the facilities necessary to solve that kind of prob-

lems [1], [11], [12], [13]. It does it via system calls for

creating and deleting tasks, suspending and resuming

their execution, and so on. The system automatically

takes care of task scheduling. Although tasks may

logically proceed in parallel, the CPU is physically ca-

pable of running only one task at a time; therefore the

scheduler interleaves their execution.

3 Petri Net Formalism
The use of Petri nets has been shown to be very

promising for modelling and analysing real-time sys-

tems as well as many other concurrent systems [2].

Debugging costs are a major di�culty for real-time

distributed systems. Therefore, it is valuable to per-

form as many checks as possible on speci�cations be-

fore implementation. For that reason, it is of interest

to present the students with an abstract model capa-

ble to express parallelism and to derive formal proofs.

Petri net (PN) is an excellent formalism of this kind

for its ability to validate behavioural properties [8],

[10], [14].

The state-transition dynamics in a manufacturing

system are modelled as a controlled Petri net (CtlPN),

which is an extension of standard Petri nets with ex-

ternal control inputs as additional enabling conditions

on transitions [4].

De�nition 1: Let a Petri net as a four-tuple

< P; T; Pre; Post > is such that

P is a �nite and non-empty set of places

T is a �nite and non-empty set of transitions

Pre is an input function (precondition)

Post is an output function (postcondition).

1. A Matrix C = (cij) where (1 � i � n; 1 � j � m)

is called the incidence matrix of PN i�

C = Post� Pre (1)

2. A vector f : (1; :::; n) 2 Z+ is called a P-invariant

of the given PN, i�

C
T � f = 0 (2)

3. A vector s : (1; :::;m) 2 Z+ is called a T-invariant

of the given PN, i�

C � s = 0 (3)

De�nition 2: An invariant f of CT �f = 0 is called

standardized i� f can not be written in the form f =

xi+xj , where xi; xj are invariants and xi 6= 0 , xj 6= 0

More generally the decomposition and the compo-

sition of a given invariant f can be described by

f =

gX

i=1

�ix
i (4)

with factors �i and generators xi.

Level �i 2 Generators xi Set fxig

1 Q xi 2 Zn fxig Base

2 Z xi 2 Zn fxig Base

3 Q+ xi � 0 fxig Unique

4 Z+ xi � 0 fxig Unique

5 f0,1g xi 2 f0; 1gn fxig Unique

Table 1: Generator computational levels

Methods calculating invariants are published by

Martinez and Silva [7] and others. Kruckenberg and

Jaxy [6] considered several algorithms calculating gen-

erators and divided the computations into �ve levels

as shown in the Table 1.

We will focus only on the third level, where each in-

variant is a positive linear combination of generators.

It is evident that in the case of event graphs �i 2 Z+

and xi 2 f0; 1g
n already for the third level. The gen-

erators from this level will be called simply generators

in the rest of this article. In [9], it is proved that the

set of generators is �nite and unique.

Kruckenberg and Jaxy give an algorithm calculat-

ing generators, based on the Kannan and Bachem [5]

algorithm to calculate Hermite normal form and on

the theory of polyhedral cones. This algorithm serving

as a base for a task decomposition was implemented in

Matlab and is available from the author upon request.

Having generators of P-invariants, it is evident

which transitions have to be �red in sequence. The

problem now is to choose the set of generators cover-

ing all places representing actions. The selection could

be done automatically seeking for an optimal solution

(e.g., minimal number of generators). But this choice

is very arti�cial and does not re
ect the physical tenor

of the manufacturing system. It is better to choose the

generators manually so that they represent separate

machines of the manufacturing system.

To make use of this theory, students are given a

manufacturing problem. Using PN simulator they �rst

draw a Petri net model of the problem. In this environ-

ment, they simulate the behaviour of the system and

extract the incidence matrix C and an initial marking

vector M0. Using Matlab, they obtain the genera-

tors of P-invariants and choose those corresponding

to separate machines and serving as input data for

the supervisor program described in the next section.

Having the generators of P-invariants and the initial

marking vector M0, students prove that there is no

deadlock in the system. In this subclass of PN called

event graph, it is su�cient to prove that there is at

least one token in each P-invariant. That corresponds

to a simple matrix operation in Matlab.

4 Experimental Setup

The model of a technological process developed at

the Department of Control Engineering, CTU Prague,

is presented in Figure 1. This model consists of sev-

eral kinds of machines: robots, conveyor-belts, storing

plates and simple manipulators. A number of techno-

logical processes can be realized using various con�g-

urations of the machines.

Local control systems were realized by universal

boards based on a microcomputer (Intel 8051) work-

ing in a multiprocessor mode. The boards are inter-

connected by a common link (modi�ed serial interface

RS232) with a PC acting as a master (see Figure 2).

ROBOT PLATEROBOT
....

1 2

RESET

RI

TxD

RxD

CONVEYOR

Figure 2: An experimental environment structure

The operating system kernel allows to create dy-

namically several concurrent processes. Figure 3

shows a block diagram of a fully parameterized pro-

gram acting as a manufacturing system supervisor.

Robot n

Robot 2
Robot 1

Conveyor m

Conveyor 2
Conveyor 1

flags

interrrupt
handler

COM1

flag

Link

Figure 3: The supervisor structure

The program reads all the required information

from a �le containing speci�cations of separate tasks

corresponding to the chosen generators. Synchroniza-

tion among the generators (tasks) is done simply by

ags. The tasks are connected to machines by a

common link (Figure 2) performing communication in

both directions (PC! machine, machine! PC). The

shared link is accessed by a special process (named

Link) pending for a
ag from the interrupt handler

on a serial port COM1 and performing demultiplex of

messages coming from the machines.

A

AA

AAA

C

BB

B

BBBCCC

forward backward

CC

Robot

Figure 4: A sample problem

Place Robot Activity

P1 move to AAA

P2 wait

P3 move to A, close, move to AAA

P4 wait

P5 move to AA, open, move to AAA

P6 move to BBB

P7 wait

P8 move to BB, close, move to BBB

move to CCC, C, open, move to CCC

Place Conveyor Activity

P9 forward to A

P10 wait

P11 forward to A

P12 wait

P13 backward to B

P14 wait

Place Flag Meaning

P15:::P20 wait

Table 2: The actions corresponding to places in Fig. 5

Figure 4 shows a simple manufacturing system con-

sisting of two machines and two objects: a conveyor

running forward/backward, a robot in di�erent posi-

tions, white object in position C and black object in

position A. The function of a system performing an

object composition in position A and a decomposition

in position B is depicted in Figure 5 and Table 2.

1

P1

P2

P3

P4

P5

P6

P7

P8

1

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

Figure 5: PN representation of a sample problem

In order to represent all the states of the system,

it is necessary to guarantee that the input places to

the synchronization transitions have no action mean-

ing (e.g., P2,P15 to T2). The PN in Figure 5 can

be decomposed into two P-invariants corresponding

to the machines (robot P1; P2; P3; P4; P5; P6; P7; P8

and conveyor P9; P10; P11; P12; P13; P14). The two P-

invariants and separate synchronization points among

them (P15; P16; P17; P18; P19; P20) are given in the �le

as parameters to the program acting as the supervi-

sor. The program �rst creates three tasks (Robot1,

Conveyor1 and Link) and six
ags, and then starts

the object composition and decomposition.

Handling asynchronous events with a real-time ker-

nel is more di�cult in the design phase (task decom-

position is an NP-complete problem) than using a con-

trol system based on input ports polling in each sam-

pling period. On the other hand this approach is more

structural and allows more e�cient programming.

The success of this procedure relies on the fact that

students already have a theoretical background gained

in courses on Linear Algebra and Theory of Systems.

This allows them to deal with the use of the set of

P-invariant generators that is unique for a given Petri

net representing the manufacturing problem.

5 Summary

The system described above is used in two labo-

ratory courses at the Department of Control Engi-

neering. In the course Operating Systems for Con-

trol, students are given libraries that allow them to

communicate with the manufacturing system and tune

their own programs running under the multitasking

OS and managing a speci�ed manufacturing task on

a �xed topology. In the course Distributed Control

Systems, students specify various manufacturing tasks

by Petri nets and decompose the problem into sep-

arate processes using algorithms that search for the

set of P-invariant generators. Choosing a subset of

P-invariant generators they create an input data �le

and run fully parameterized supervisor to control the

distributed system.

The lab was realized on various software platforms

(VRTX, Linux, and others). Separate implementa-

tions are used as physical models to test new com-

ponents and control systems appearing on the mar-

ket. New boards communicating via industrial �eld-

bus technologies such as CAN and Pro�bus, are un-

der development. Thanks to the system modular-

ity, it is easy to split the development into separate

phases (mechanics, actuators and sensors, electronics,

microcontroler programming, communication, super-

visor level, PN token player, etc.) and realize them

incrementally as projects done by the students.

Acknowledgments

I wish to thank anonymous reviewers, who pro-

vided comments and suggestions that improved this

paper. This research has been conducted at the De-

partment of Control Engineering as part of the re-

search project New Control System Structures for Pro-

duction Machines and has been supported by grant

GACR No.102/95/0926.

References

[1] J.H.Anderson, S.Ramammurthy, K.Je�ay, "Real-

Time Computing with Lock-Free Shared Ob-

jects", Proc. Real-Time Systems Symposium,

IEEE Computer Society Press, Los Alamitos,

Calif., 1995, pp. 28-38.

[2] C. Ghezzi et al., "A Uni�ed High-Level Petri Net

Formalism For Time-Critical Systems ", IEEE

Trans. Software Engineering, 1991, pp. 160-172.

[3] Z. Hanz�alek, "Real-time Neural Controller Imple-

mented on Parallel Architecture", in: A. Crespo

(ed.): Proc. Arti�cial Intelligence in Real-Time

Control, Elsevier Science, Amsterdam, 1995, pp.

313-316.

[4] A. Ichikawa, K. Hiraishi, "Analysis and Control

of Discrete Event Systems Represented by Petri

Nets", Discrete Event Systems: Models and Ap-

plications, Springer-Verlag, Berlin, 1988.

[5] R. Kannan, A. Bachem, "Polynomial Algorithms

for Computing the Smith and Hermite Normal

Forms of an Integer Matrix", SIAM J. Comput.,

Vol. 8, No. 4, 1979, pp. 499-507.

[6] F. Kruckeberg, M. Jaxy, "Mathematical Methods

for Calculating Invariants in Petri Nets", in: G.

Rozenberg (ed.): Advances in Petri Nets, LNCS

266, Springer-Verlag, Berlin, 1987, pp. 104-131.

[7] J. Martinez, M. Silva, "A Simple and Fast Algo-

rithm to Obtain All Invariants of a Generalized

Petri Nets", in: C. Girault, W. Reisig (eds.): Ap-

plication and Theory of Petri Nets, Informatik

Fachberichte 52, Springer-Verlag, Berlin, 1982,

pp. 301-310.

[8] T.Murata, "Petri Nets: Properties, Analysis and

Applications", Proceedings of the IEEE, Vol. 6,

No. 1, 1990, pp. 39-50.

[9] K.H. Pascoletti, "Diophantische Systeme und Lo-

sungsmethoden zur Bestimmung aller Invarianten

in Petri-Netzen", Berichte der GMD, No. 160,

Bonn, 1986.

[10] J.L. Peterson, "Petri Net Theory and Modeling

of Systems", Prentice Hall, Englewood Cli�s, NJ,

1981.

[11] J.A.Stankovic, K.Ramamritham, "The Spring

Kernel: A New Paradigm for Real-Time Sys-

tems", IEEE Software, Vol. 8, No. 3, 1991, pp.

62-72.

[12] W.Tarng, T.H.Lin, "Fault-Tolerant Task Assign-

ment in Distributed Real-Time Computing Sys-

tems", Readings in Real-Time Systems, J. H. Lee,

C.M. Krishna, eds., IEEE Computing Society

Press, Los Alamitos, Calif., 1993, pp. 98-110.

[13] H.Tokuda, T.Nakajima, P.Rao, "Real-Time

Mach: Towards a Predictable Real-Time Sys-

tems", Proc. Usenix Mach Workshop, 1990, pp.

1-10.

[14] R. Valette, "Analysis of Petri Nets by Stepwise

Re�nement", J. Comput. Syst. Sci, Vol. 18, 1979,

pp. 35-46.

