Petri Net Models for Manufacturing Systems

Zdenék Hanzalek
Department of Control Engineering, Karlovo ndm. 13
Czech Technical University in Prague
121 35 Prague 2, Czech Republic
hanzalek@rtime.felk.cvut.cz

Abstract

This paper presents an experimental laboratory
setup aimed at creating a flexible manufacturing sys-
tem for use in teaching real-time control. The machine
models (robots, conveyors, etc.) are self-contained
elements with their own intelligence, communicating
with a master computer. A supervisor program Tun-
ning on the master computer is implemented by a
real-time operating system, enabling the dynamic cre-
ation of processes. The supervisor program is fully
parameterized, with parameters specifying manufac-
turing subtasks of all machines and synchronization
among them. This makes the control system modu-
lar and flexible. A manufacturing task is specified by
Petri nets that are automatically decomposed into a
set of unique P-invariant generators. The choice of
concurrent processes corresponding to P-invariants is
done semi-automatically to reflect the physical tenor
of the manufacturing system.

1 Introduction

Five and half years of full-time study at the Czech
Technical University is divided into three periods. The
basic stage, which gives students theoretical princi-
ples of electrical engineering (namely, mathematics
and physics). This stage is completed with the first
state examination and its average duration is about 4
semesters.

The second period of study ends with the Bache-
lor’s degree. A set of obligatory subjects provides ba-
sic ground for student’s knowledge in a specific disci-
pline, such as control engineering. Beside subjects ori-
ented towards theory of control and towards electronic
systems, there is a set of courses dealing with the use
of computers in control engineering. These courses
are supported by laboratories such as Logic Systems,
Computers for Control and Operating Systems for
Control. Optional courses from all-departmental offer-
ings complete the curriculum structure with subjects
from other areas. Graduates of bachelor study submit

Figure 1: A flexible manufacturing system

their project work and receive the title of Bachelor,
after examinations.

The third and last part of full-time study at the
Department of Control Engineering is to obtain the
title of Enginner. In this period, students choose
among many elective courses of their specialization
(e.g. Control Systems, AI, Robotics, Mechatronics,
Biocybernetics). Laboratories of Distributed Control,
Modern Control Engineering (microcontrolers, PICs,
PLCs, XLINXs) and Design of Control Systems (In-
touch, Control Panel, etc.) are supporting the courses
related to real-time control. At the end of the en-
gineering period, students submit their diploma the-
sis and take a final state examination covering three
main subjects: Theory of Control, Computers, and
Electronic Systems.

Students coming to our labs are already familiar
with programming (Pascal, C, low-level languages),
so they can fully concentrate on conceptual aspects of
systematic design. They are taught the basic princi-
ples of real-time control (real-time requirements, inter-

rupt system, synchronous/asynchronous events han-
dling, etc.), using simple physical models (decoding in-
cremental sensor signals, generating waveforms, etc.)
in the laboratory of Computers for Control. In the two
next laboratories, Operating Systems for Control and
Distributed Control Systems, we use a flexible manu-
facturing system, whose elements are described briefly
in this article.

The material related to real time is organized in a
modular fashion, which allows its use in a variety of
courses offered by the Department. Below, one such
module is described, based on Petri nets formalism.
This is followed by a presentation of an experimental
setup and a summary.

2 Real-Time and Concurrency

To understand the concept of real-time require-
ments, students are taught the basic principles, first.
In the real-time applications, a computer is connected
directly to the physical equipment and is dedicated to
controlling that equipment. Consequently, the system
must meet response requirements that are mandated
by the equipment itself, rather than those being dic-
tated by the computer. The requirement to meet ex-
ternally imposed deadlines is at the heart of what is
termed a real-time system. The definition of a real-
time system states that it has to respond to externally
generated events within a specified and finite interval.
Consequently, the software must be designed to meet
these response time requirements [3].

A characteristic of a computer supervising a dis-
tributed system is that many activities within it pro-
ceed in parallel. For example, some parameters must
be sampled and controlled at a very fast rate, whereas
other parameters need only be sampled once per sec-
ond. Logically, those two operations proceed in par-
allel, while of course the CPU executes them in an
interleaved fashion. Similarly, controlling several I/0O
devices at once usually results in some parts of the
control software waiting for the devices to complete
an operation while other devices, having finished their
operations, are being serviced.

Whether recognized or not, this parallelism, or con-
currency, adds a major complication to the software.
To avoid all kinds of problems, programmers must take
care of mutually exclusive access to shared resources,
signaling one task by another task or by an interrupt
handler, and sending messages from one task or an
interrupt handler to another task.

A multitasking operating system (OS) usually pro-
vides the facilities necessary to solve that kind of prob-
lems [1], [11], [12], [13]. It does it via system calls for
creating and deleting tasks, suspending and resuming

their execution, and so on. The system automatically
takes care of task scheduling. Although tasks may
logically proceed in parallel, the CPU is physically ca-
pable of running only one task at a time; therefore the
scheduler interleaves their execution.

3 Petri Net Formalism

The use of Petri nets has been shown to be very
promising for modelling and analysing real-time sys-
tems as well as many other concurrent systems [2].
Debugging costs are a major difficulty for real-time
distributed systems. Therefore, it is valuable to per-
form as many checks as possible on specifications be-
fore implementation. For that reason, it is of interest
to present the students with an abstract model capa-
ble to express parallelism and to derive formal proofs.
Petri net (PN) is an excellent formalism of this kind
for its ability to validate behavioural properties [§],
[10], [14].

The state-transition dynamics in a manufacturing
system are modelled as a controlled Petri net (CtIPN),
which is an extension of standard Petri nets with ex-
ternal control inputs as additional enabling conditions
on transitions [4].

Definition 1: Let a Petri net as a four-tuple
< P, T, Pre, Post > is such that
P is a finite and non-empty set of places
T is a finite and non-empty set of transitions
Pre is an input function (precondition)

Post is an output function (postcondition).
1. A Matrix C = (¢;;) where (1 <i<n,1<j<m)
is called the incidence matrix of PN iff

C = Post — Pre (1)

2. A vector f:(1,..,n) € ZT is called a P-invariant
of the given PN, iff

CTxf=0 (2)

3. A vector s: (1,...,m) € Z+ is called a T-invariant
of the given PN, iff

Cxs=0 (3)

Definition 2: An invariant f of C7 x f = 0 is called
standardized iff f can not be written in the form f =
x; +x;, where z;, x; are invariants and z; # 0, z; #0

More generally the decomposition and the compo-
sition of a given invariant f can be described by

g

F=Y N (4)

i=1

with factors \; and generators z'.

Level | X\; € | Generators 2’ Set {x'}
1 Q xte " {z'} Base
2 Z ztezZn {z'} Base
3 QT >0 {z"'} Unique
4 Z* 2t >0 {z*} Unique
5 {0,1} | 2" € {0,1}" | {z'} Unique

Table 1: Generator computational levels

Methods calculating invariants are published by
Martinez and Silva [7] and others. Kruckenberg and
Jaxy [6] considered several algorithms calculating gen-
erators and divided the computations into five levels
as shown in the Table 1.

We will focus only on the third level, where each in-
variant is a positive linear combination of generators.
It is evident that in the case of event graphs \; € ZT
and z; € {0,1}" already for the third level. The gen-
erators from this level will be called simply generators
in the rest of this article. In [9], it is proved that the
set of generators is finite and unique.

Kruckenberg and Jaxy give an algorithm calculat-
ing generators, based on the Kannan and Bachem [5]
algorithm to calculate Hermite normal form and on
the theory of polyhedral cones. This algorithm serving
as a base for a task decomposition was implemented in
Matlab and is available from the author upon request.

Having generators of P-invariants, it is evident
which transitions have to be fired in sequence. The
problem now is to choose the set of generators cover-
ing all places representing actions. The selection could
be done automatically seeking for an optimal solution
(e.g., minimal number of generators). But this choice
is very artificial and does not reflect the physical tenor
of the manufacturing system. It is better to choose the
generators manually so that they represent separate
machines of the manufacturing system.

To make use of this theory, students are given a
manufacturing problem. Using PN simulator they first
draw a Petri net model of the problem. In this environ-
ment, they simulate the behaviour of the system and
extract the incidence matrix C and an initial marking
vector My. Using Matlab, they obtain the genera-
tors of P-invariants and choose those corresponding
to separate machines and serving as input data for
the supervisor program described in the next section.
Having the generators of P-invariants and the initial
marking vector My, students prove that there is no
deadlock in the system. In this subclass of PN called
event graph, it is sufficient to prove that there is at
least one token in each P-invariant. That corresponds
to a simple matrix operation in Matlab.

4 Experimental Setup

The model of a technological process developed at
the Department of Control Engineering, CTU Prague,
is presented in Figure 1. This model consists of sev-
eral kinds of machines: robots, conveyor-belts, storing
plates and simple manipulators. A number of techno-
logical processes can be realized using various config-
urations of the machines.

Local control systems were realized by universal
boards based on a microcomputer (Intel 8051) work-
ing in a multiprocessor mode. The boards are inter-
connected by a common link (modified serial interface
RS232) with a PC acting as a master (see Figure 2).

.
:
MIIITNES RI

RxD
TxD

ROBOT ROBOT PLATE
1 2

CONVEYOR

Figure 2: An experimental environment structure

The operating system kernel allows to create dy-
namically several concurrent processes. Figure 3
shows a block diagram of a fully parameterized pro-
gram acting as a manufacturing system supervisor.

COM1
flag
interrrupt Link
handler
Conveyor 1
flags N
S8
»_Conveyor m

Figure 3: The supervisor structure

The program reads all the required information
from a file containing specifications of separate tasks
corresponding to the chosen generators. Synchroniza-
tion among the generators (tasks) is done simply by

flags. The tasks are connected to machines by a
common link (Figure 2) performing communication in
both directions (PC — machine, machine — PC). The
shared link is accessed by a special process (named
Link) pending for a flag from the interrupt handler
on a serial port COM1 and performing demultiplex of
messages coming from the machines.

CCC BBB

backward

Figure 4: A sample problem

[Place [Robot Activity |
P move to AAA
P2 walit
Py move to A, close, move to AAA
P4 walit
P move to AA, open, move to AAA
P move to BBB
P7 wait
P move to BB, close, move to BBB

move to CCC, C, open, move to CCC

[Place [Conveyor Activity |

P, forward to A
P, 10 walit

Py forward to A
P, 12 walit

Pi3 backward to B
P, 14 walit

|| Place | Flag Meaning ||
|| P15...P20 | wait ||

Table 2: The actions corresponding to places in Fig. 5

Figure 4 shows a simple manufacturing system con-
sisting of two machines and two objects: a conveyor
running forward/backward, a robot in different posi-

tions, white object in position C and black object in
position A. The function of a system performing an
object composition in position A and a decomposition
in position B is depicted in Figure 5 and Table 2.

<
T
=

®

B
|

<
0
N
<
)
©

O
®

<
—
N
U
[y
(&)

i

<
el
w

<
U
=
o

O
Q

- T3 P16 - T10
()]
V: P4 CZ)Pll
o T4 P17 o T11
<O«
v P5 VP12
- T5 P18 o T12
—()—[]
v P6
- T6 CV)Pls
v P7
o T7 P19 - T13
)11
v P8 VP14

O

<
—
(o]

P20 o T14

>© >]
L

Figure 5: PN representation of a sample problem

]
—

In order to represent all the states of the system,
it is necessary to guarantee that the input places to
the synchronization transitions have no action mean-
ing (e.g., P»,Pi5 to Ty). The PN in Figure 5 can
be decomposed into two P-invariants corresponding
to the machines (robot Py, P, P3, Py, Ps, Ps, Py, Ps
and conveyor Pg,Plg, P11, P12,P13,P14). The two P-
invariants and separate synchronization points among
them (P15, P16,P17,P18, Plg, PQO) are given in the file

as parameters to the program acting as the supervi-
sor. The program first creates three tasks (Robotl,
Conveyorl and Link) and six flags, and then starts
the object composition and decomposition.

Handling asynchronous events with a real-time ker-
nel is more difficult in the design phase (task decom-
position is an NP-complete problem) than using a con-
trol system based on input ports polling in each sam-
pling period. On the other hand this approach is more
structural and allows more efficient programming.

The success of this procedure relies on the fact that
students already have a theoretical background gained
in courses on Linear Algebra and Theory of Systems.
This allows them to deal with the use of the set of
P-invariant generators that is unique for a given Petri
net representing the manufacturing problem.

5 Summary

The system described above is used in two labo-
ratory courses at the Department of Control Engi-
neering. In the course Operating Systems for Con-
trol, students are given libraries that allow them to
communicate with the manufacturing system and tune
their own programs running under the multitasking
OS and managing a specified manufacturing task on
a fixed topology. In the course Distributed Control
Systems, students specify various manufacturing tasks
by Petri nets and decompose the problem into sep-
arate processes using algorithms that search for the
set of P-invariant generators. Choosing a subset of
P-invariant generators they create an input data file
and run fully parameterized supervisor to control the
distributed system.

The lab was realized on various software platforms
(VRTX, Linux, and others). Separate implementa-
tions are used as physical models to test new com-
ponents and control systems appearing on the mar-
ket. New boards communicating via industrial field-
bus technologies such as CAN and Profibus, are un-
der development. Thanks to the system modular-
ity, it is easy to split the development into separate
phases (mechanics, actuators and sensors, electronics,
microcontroler programming, communication, super-
visor level, PN token player, etc.) and realize them
incrementally as projects done by the students.
Acknowledgments

I wish to thank anonymous reviewers, who pro-
vided comments and suggestions that improved this
paper. This research has been conducted at the De-
partment of Control Engineering as part of the re-
search project New Control System Structures for Pro-
duction Machines and has been supported by grant
GACR No.102/95/0926.

References

[1] J.H.Anderson, S.Ramammurthy, K.Jeffay, ”Real-
Time Computing with Lock-Free Shared Ob-
jects”, Proc. Real-Time Systems Symposium,
IEEE Computer Society Press, Los Alamitos,
Calif., 1995, pp. 28-38.

[2] C. Ghezzi et al., ” A Unified High-Level Petri Net

Formalism For Time-Critical Systems ”, IFFE
Trans. Software Engineering, 1991, pp. 160-172.

[3] Z.Hanzalek, ”Real-time Neural Controller Imple-
mented on Parallel Architecture”, in: A. Crespo
(ed.): Proc. Artificial Intelligence in Real-Time
Control, Elsevier Science, Amsterdam, 1995, pp.
313-316.

[4] A. Ichikawa, K. Hiraishi, ” Analysis and Control
of Discrete Event Systems Represented by Petri
Nets”, Discrete Event Systems: Models and Ap-
plications, Springer-Verlag, Berlin, 1988.

[5] R. Kannan, A. Bachem, ”Polynomial Algorithms
for Computing the Smith and Hermite Normal
Forms of an Integer Matrix”, SIAM J. Comput.,
Vol. 8, No. 4, 1979, pp. 499-507.

[6] F. Kruckeberg, M. Jaxy, ”Mathematical Methods
for Calculating Invariants in Petri Nets”, in: G.
Rozenberg (ed.): Advances in Petri Nets, LNCS
266, Springer-Verlag, Berlin, 1987, pp. 104-131.

[7] J. Martinez, M. Silva, ”A Simple and Fast Algo-
rithm to Obtain All Invariants of a Generalized
Petri Nets”, in: C. Girault, W. Reisig (eds.): Ap-
plication and Theory of Petri Nets, Informatik
Fachberichte 52, Springer-Verlag, Berlin, 1982,
pp. 301-310.

[8] T.Murata, ”Petri Nets: Properties, Analysis and
Applications”, Proceedings of the IEEE, Vol. 6,
No. 1, 1990, pp. 39-50.

[9] K.H. Pascoletti, ” Diophantische Systeme und Lo-
sungsmethoden zur Bestimmung aller Invarianten
in Petri-Netzen”, Berichte der GMD, No. 160,
Bonn, 1986.

[10] J.L. Peterson, "Petri Net Theory and Modeling
of Systems”, Prentice Hall, Englewood Cliffs, NJ,
1981.

[11] J.A.Stankovic, K.Ramamritham, ”The Spring
Kernel: A New Paradigm for Real-Time Sys-
tems”, IEEE Software, Vol. 8, No. 3, 1991, pp.
62-72.

[12]

[13]

[14]

W.Tarng, T.H.Lin, ”Fault-Tolerant Task Assign-
ment in Distributed Real-Time Computing Sys-
tems”, Readings in Real-Time Systems, J. H. Lee,
C.M. Krishna, eds., IEEE Computing Society
Press, Los Alamitos, Calif., 1993, pp. 98-110.

H.Tokuda, T.Nakajima, P.Rao, ”Real-Time
Mach: Towards a Predictable Real-Time Sys-
tems”, Proc. Usenix Mach Workshop, 1990, pp.
1-10.

R. Valette, ”Analysis of Petri Nets by Stepwise
Refinement”, J. Comput. Syst. Sci, Vol. 18, 1979,
pp- 35-46.

