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Abstract 
 

In this article, we optimally solve an integrated production and material handling scheduling problem.  
Traditionally, scheduling problems consider machines as the only constraining resource. This is however 
no longer true as material handling equipment are becoming more and more valuable resources requiring 
important investments.  Their operations should be optimized and above all synchronized with machine 
operations. In the problem, addressed in this paper, a job-shop context is considered. Machines and material 
handling equipment (AGVs) are considered constraining resources. The shortest path between two 
machines is used for a material handling operation or an empty travel. A mathematical programming model 
and a constraint programming model are presented for the problem and solved optimally on test problems 
from the literature and larger instances that we generated. A commercial software (ILOG OPLStudio) was 
used for modeling, testing and integrating both models in a decision support system. The performance of 
the two methods is comparable when using the data from the literature. However, for larger instances the 
performance of the constraint programming model was superior to the mathematical programming model. 
Keywords: Scheduling, Job-shop, Material handling, Mixed integer programming, Constraint 
programming. 
 

1 Introduction 
 
Real-life scheduling problems are very complex, not only because of their combinatorial nature, 
but also because of constraints dictated by different production environments. These constraints 
are sometimes very specific and other times very general. In manufacturing, these include 
material handling constraints. Unfortunately, classical scheduling problems formulations neglect 
this reality. Researchers working on material handling problems address the material handling 
scheduling issue, often independently of the machine-scheduling problem. They typically 
propose, for a scheduling environment, the resolution of two independent eventually easier 
problems: machine scheduling and material handling scheduling. This simplification results in 
sub-optimal solutions for the real scheduling problem featuring resource constraints for both 
machines and material handling equipment. Recently, researchers who studied the problem of 
simultaneous scheduling of machines and material handling emphasized this fact. Contributions 
in this area presented heuristic solution approaches. Moreover, test problems represented very 
special cases in manufacturing where travel times for material handling equipment are 
comparable to processing times on machines if not longer. This hypothesis, although it justifies in 
part the simultaneous scheduling approach, is very restrictive. In this paper, we consider material 



handling times that are shorter than the processing times, which corresponds to real 
manufacturing settings.  
 
Several researchers proposed frameworks for the representation of production systems: Hax and 
Meal (1975), Stecke (1984) and Pinedo (1995) to name some. Several others proposed integration 
schemes for different levels of decision making as Lasserre (1992) and Wein and Chevalier 
(1992). This paper presents an integration, at the same decision making level, among resources 
influencing a production schedule: machines and AGVs. From a practical standpoint, the two 
solution methodologies proposed in this work can be integrated in a decision support system for 
industrial organizations. OPLStudio supports both methodologies and integration can be 
envisaged through script files for special applications. This paper is organized as follows. Section 
2 presents a literature revue. Section 3 presents the problem and a description of the operational 
system considered. The models: mathematical programming and constraint programming are 
presented in section 4. Section 5 presents the experimentation and the conclusion follows. 
 
2 Literature review 
 
The first contributions in integrated scheduling are extensions of the 2 machine flow-shop 
problem solved optimally by Johnson (1954). Researchers tried to solve the same problem 
considering material handling times, equipment availability and capacity constraints for buffers. 
Among others, Maggu et al. (1981), Stern and Vitner (1990), Panwalker (1991) and Levner et al. 
(1995) studied the problem for the minimization of the makespan. A larger size flow-shop 
problem was studied by Raman et al. (1986) in an FMS setting.  Handling times were not 
sequence dependent.  
 
In a job-shop context, Bilge and Ulusoy (1995) consider an integrated production and material 
handling scheduling problem with the objective of minimizing the makespan in an FMS. Unlike 
in Raman et al. (1986), AGVs do not return to a load/unload station after every material handling 
operation.  Hence, handling time is sequence dependent. A non linear formulation is presented.  
The problem is then decomposed into 2 sub-problems and solved by a “Time-window” heuristic. 
At every iteration, they obtain a new machine schedule this is used to determine time-windows 
for material handling operations.  They then search for a feasible solution for the material 
handling scheduling sub-problem. If this is not possible, the machine schedule is revised and the 
heuristic continues. 
 
Ulusoy et al. (1997) study the same problem and propose a genetic algorithm for solving it.  
Results are better than those obtained using the “Time-window” heuristic. The algorithm solved 
optimally 60% of the test problems. The main difference between the two approaches is that a 
solution obtained by the genetic algorithm contains simultaneously information on the machine 
scheduling and the material handling scheduling in the chromosomes while the iterative approach 
considers the 2 systems separately. The shortest path between 2 machines determines the 
handling time and deadhead time. There are no buffer considerations. 
 
Lee and DiCesare (1994) study the integrated production and material handling scheduling in a 
job-shop context.  Two shortest path routes (in opposite directions) exist between every pair of 
machines.  Routes are constraining resources. A Petri-net is presented and a heuristic method 
proposed. The objective is to minimize the makespan.  They consider a shop of 3 machines and 1 
robot for transformation activities and 5 AGVs for material handling activities.  Two cases are 
presented.  In the first, the AGV is dedicated to a job, accompanying it till the end of processing. 
In the second, the AGV is dedicated to a machine to move the jobs after being processed by the 



machine.  2 AGVs are dedicated to the load/unload station.  Therefore, no assignment decisions 
are considered. The method was applied to another problem with no a priori assignments (3 
machines, 1 AGVs and 3 jobs). Operations per job are less than or equal to 3. 
 
Sabuncuoglu and Karabuk (1998) study the integrated scheduling problem considering a limited 
buffer capacity for machines.  They use a partial enumeration method (Filtered Beam Search).  
Their job-shop consists of 6 machines and a load/unload station.  3 AGVs are responsible for 
material handling operations.  However, the limited buffer capacity constraint is not rigid and 
overcome by a design solution that supposes that a central infinite capacity buffer exists and that 
AGVs can be rerouted to it at any time to prevent blocking. Conflict avoidance is not clearly 
discussed in the paper.  Each route segment measures 5 distance units. Test problems have up to 
25 jobs, 5 or 6 operations per job.  Processing times are determined by a 2-Erlang distribution. 
The performance of the algorithm is superior compared to scheduling rules.  Several objective 
functions were tested.   
 
Smith et al. (1999) consider not only material handling activities but also explicitly loading and 
unloading activities.  In their problem, a machine stays blocked, if there is no material handling 
resource available to free it.  Two heuristic approaches are presented. One is a global random 
search procedure O (n2 log n) that considers all operations to be scheduled: n being the number of 
operations to schedule. The second approach is hierarchical and considers machines first. 
 
A 2-stage assembly production system composed of 4 machine cells is studied by Anwar and 
Nagi (1998).  The main distinction between single and 2-stage production is in the nature of the 
precedence constraints.  In assembly shops, precedence relations exist between operations on 
different pieces that will ultimately be a part of one end-product.  The problem does not consider 
a route network and conflicts are not taken into account.  The authors present a formulation and a 
heuristic to solve the problem. Anwar and Nagi (1997), study the same assembly shop.  They 
propose a heuristic methodology that accounts for conflicts.  No numerical results are reported. 
 
Some contributions were also presented in a dynamic setting.  They consider continuous arrival of 
jobs instead of a set of jobs available at the beginning of the scheduling horizon.  Myopic 
scheduling rules are generally used. Sabancuoglo and Hommertzhein (1989) studied scheduling 
rules for machines and AGVs in an FMS.  In 1992, they studied integrated scheduling of 
production and material handling for an FMS with a job-shop production environment. 
Simulation was used to evaluate the performance of different scheduling rules. The objective 
considered was to minimize average flow-time. They consider finite capacity for machines, 
material handling equipment and work-in-progress buffers. The number of machines is between 1 
and 6, and the system has 2 AGVs. In 1992, Sabuncuoglu and Hommertzheim propose an on-line 
algorithm with a better vision compared to the scheduling rules.  The algorithm considers more 
than one operation at a time. In 1993, the authors consider the experimental investigation of 
scheduling rules for a wide variety of objective functions. In 1998, they consider this 
investigation for the case of machine break-down. Jawahar et al. (1998) also study the dynamic 
problem. They present a heuristic that uses dispatching rules, accounting for conflicts, for AGVs.  
 
Previous contributions consider inter-machine distances to be the most influencing for the 
material handling activities. Lee and Maneesavet (1999), however, present a contribution where 
material handling activities that influence the schedule take place between the load/unload station 
and the machine. Dispatching strategies are proposed and evaluated for rail-guided vehicles in a 
loading/unloading zone of an SMF. 
As presented, although different complementary aspects are integrated to the machine scheduling 
problem, solution methodologies are all heuristic. We optimally solve the integrated scheduling 



problem, in a job-shop setting, for the first time. Methodologies we use: mathematical 
programming and constraint programming are also used for the first time to solve the problem. 
 
3 Problem statement  
 
The problem reads : given the shop layout and job routes indicating precedence relations and 
processing times, determine the starting time of production and material handling operations for 
all jobs together with the assignment of material handling operations to AGVs to minimize the 
makespan.  
 
A job is composed of a number of pieces to be processed on and handled between machines in a 
predefined sequence. These pieces form a lot or several lots. A certain number of pieces forming 
a lot are gathered on a pallet and then handled by AGVs.  We consider one lot to schedule for 
each job. Operation refers to processing on a machine or handling between 2 machines.  
 
The operational system considered is a job-shop environment, with machines and AGVs referred 
to as workcentres. The number and types of machines are given. That is the lot assignment to 
machines is already determined together with the order in which machines will be visited.  
Sufficient input/output buffer space is available at each machine. Tools, pallets and resources for 
loading and unloading are sufficiently available. Machine operations are not preemptive and the 
set of operations to schedule together with relevant data is available at the beginning of the time 
horizon. That is all jobs have zero ready times.  
 
Trips follow the shortest path between 2 machines to accomplish whether a material handling 
operation or an empty travel (deadhead).  Material handling operations and deadheads are not 
preemptive.  The duration of the deadhead depends on the assignment sequence of the material 
handling operations to AGVs. All data are deterministic. 
 
Five layouts are considered in generating the test problems. They are presented in Figure 1. The 
first 4 layouts were presented by Bilge and Ulusoy (1995).  Each has 4 machines and one 
load/unload station. We propose a fifth layout that includes 8 machines and a load/unload station.  
 
4 Models  
 
Mathematical programming formulations proposed in the literature for job-shop scheduling 
problems are mixed integer and sometimes non-linear for disjunctive constraints.  For large size 
problems, these are quite difficult to solve.  Constraint programming is a rather new research area 
that has proven effective for scheduling applications (Baptiste et al., 2001).  In section 4.1, we 
present a mixed-integer model for the integrated scheduling job shop.  In section 4.2, we present a 
constraint programming model for the problem. 
 
4.1  Mathematical programming formulation  
The model includes variables and constraints representing the job-shop production scheduling 
problem. To this, we add precedence constraints for material handling operations, assignment 
constraints of material handling operations to AGVs and connectivity constraints ensuring that 
empty travel times are considered. A material handling operation corresponds to moving a job 
from a source machine to a destination machine on which the following processing will take 
place. An empty travel corresponds to the movement of the AGV from the machine destination of 
a material handling operation to the machine source of the following material handling operation 



on the same AGV. Conflicts are not considered.   
 
4.1.1  Notation  
O Set of operations (j∈ O), every operation belongs to a specific job 
OM⊂ O Set of material handling operations, every operation belongs to a specific job 
OL⊂ O Set of last operations of all jobs 
OF⊂ O Set of first operations of all jobs 
W Set of all workstations: machines and AGVs       w∈ W 
C ⊂ W Set of AGVs 
M ⊂ W Set of machines 
Ow Set of operations soliciting workstation w  
n(j) Following operation of operation j 
S Start of the time horizon 
tj  Processing time of operation j 
kij Empty travel time from the destination machine of material handling operation i to the source machine of 

material handling operation j 
H A big value  
Ψij Variable having the value 1 if operation i precedes operation j on their requested resource, 0 otherwise 
Φjw Variable having the value 1 if the material handling operation j is assigned to AGV w, 0 otherwise  
Sj  Variable indicating the start time of operation j  
Cmax Variable indicating the end time of the schedule (makespan) 
 
4.1.2  Mathematical programming model  

Min  Cmax   (1) 
Cmax ≥ Sj+ tj 

 ∀ j ∈  OL (2) 
Sn(j) ≥ Sj+tj ∀ j ∈  O\OL (3) 
Ψij + Ψji =1 ∀ i,j ∈  Ow | i≠j, ∀ w   (4) 
Sj ≥ (Si+ti) + (Ψij -1) H ∀ w∈ M, ∀ i,j ∈  Ow | i≠j    (5) 
Sj ≥ Si+ti + kij - (3-Ψij  - Φiw - Φjw) H ∀ w∈ C, ∀ i,j ∈  Ow    | i≠j  (6) 
Sj > =S ∀ j∈ OF (7) 
∑w  Φjw =1 ∀ w∈ C, ∀ j ∈  Ow     (8) 
Ψij ∈ {0,1}  (9) 
Φjw ∈ {0,1}  (10) 
Sj ≥ 0  (11) 

Table 1. Complete model in mathematical programming  
 
The model minimizes the makespan (1). Constraints (2) ensure that the makespan is greater than 
the end times of last operations. According to constraints (3), precedence relations are respected. 
Constraints (4) determine the order in which a machine or an AGV is visited, operation i before j 
or inversely j before i. Constraints (5) and (6) model the disjunctive character of the resources. 
For two operations that follow on a resource, the second cannot start before the first is 
accomplished. Constraints (6) also account for connectivity of the AGVs routes. They consider 
empty travel time when two material handling operations that follow on an AGV. Of course, H 
must be chosen as small as possible to get a better formulation. The first operations start after or 
at the beginning of the schedule horizon according to constraints (7). Constraints (8) state that a 
material handling operation is assigned to one AGV. Constraints (9-10,11) define binary and 
continuous variables respectively. The model was solved using OPLStudio version 3.6. 
 
4.2  Constraint programming formulation  
The constraint programming model is formulated using the same commercial software as the 
mathematical programming model (OPLStudio).  The model uses software functions that enable 



solving by the solver (Scheduler), part of OPLStudio. This solver is specially designed for 
scheduling problems. It uses constraint programming algorithms. The number of variables and 
constraints is significantly less than those of the mixed-integer formulation.  The model is written 
in a more expressive manner and data structures are more compact. 
 
First, we present resource types in OPLStudio (Van Hentenryck, 1999). For an introduction to 
constraint programming the reader is referred to Marriott and Stucky (1998). For a presentation of 
logic-based methods for optimization, we refer the reader to Hooker (2000). 
 
Unary resources: a unary resource cannot be shared by two activities/operations at the same time. 
Alternatives resources: alternative resources are equivalent from the activity/operation 
standpoint. We can use one or the other. The instruction ActivityHasSelectedRessource used 
with appropriate arguments holds if a resource is chosen by an activity.  It can be used to 
formulate global constraints. Discrete Resources: discrete resources are used to model equivalent 
and interchangeable resources.   
 
4.2.1  Notation  
In this section we present the notation for the constraint programming model.  We present the 
declarative names as in the model formulated with OPLStudio. Next, we present the model using 
usual logical constraints. Furthermore, functions of the software used in modeling are stated in 
their names and described below and correspondence with the model constraints is indicated. 
 
Machines  The machines 
Vehicles The AGVs 
Tasks Set of operations of machines and material handling 
Tasksmach  ⊂   Tasks Machine operation  
Tasksman  ⊂   Tasks  Material handling operation  
setOfPrecedences (t,q)| t et q ∈  Tasks Pairs of tasks with a precedence relation (t precedes q). 
d[t] Processing time of machine or material handling operation t  
Resourcem[t] Machine solicited by operation t 
k[t,q] Empty travel time between material handling tasks t and q 

assigned to the same AGV 
S[t] Variable (type : integer) indicating the start time of operation t  
Hosts[t] Variable (type: AGV)indicating the assignment of a material 

handling operation to an AGV 
S[makespan] End time of the schedule (makespan) 
 
4.2.2  Constraint programming model 
The constraint programming formulation has the objective of minimizing the makespan. In the 
model, we define a set of production operations to accomplish as well as a set of material 
handling operations. Deadheads are not operations to accomplish. They arise as material handling 
operations are assigned to AGVs.  They are accounted for by a global constraint that formulates 
the AGVs disjunction. 
 

Minimize  S[makespan]  (1) 
S[q] ≥ S[t] +d[t] ∀  (t,q) ∈ setOfPrecedences (2) 
S[makespan] ≥ S[t] +d[t] ∀  t∈ Tasks (3) 
S[q] ≥ S[t] + d[t]  \/ S[t] ≥ S[q] +d[q] ∀ m|resourcem[t]=resourcem[q]=m (4) 
Hosts [t] = Hosts[q] ⇒ S[q] ≥ S[t] +d[t] + 
k[t,q] \/ S[t] ≥ S[q] +d[q] + k[q,t] 

∀  t,q ∈  Tasksman (5) 

Table 2. Complete model in constraint programming 



 
In (1) we minimize the makespan. Precedence relations between operations are modeled by 
constraints (2) and (3). Most of constraints (3) are redundant (except for the last operations) as 
they are already included in constraints (2). However, this affects the solution time positively. 
Disjunction constraints for machines are presented by constraints (4) In the OPLStudio model; 
these are accounted for by the unary resource declaration for the machines. The declaration is 
used in conjunction with a requires constraint. The latter ensures that resource requirements are 
met. Constraints (5) account for AGVs disjunction and deadheads. It imposes that if 2 material 
handling operations follow on an AGV, empty travel time should be calculated before the second 
material handling operation starts. In the OPLStudio model, AGVs are declared alternative 
resources, as defined earlier. This declaration is also used in conjunction with a requires 
constraint to respect resource needs. Corresponding to constraints (5), we formulate a global 
constraint using ActivityHasSelectedResource instruction, that when holds for the same AGV 
implies the respect of the deadhead time. For a detailed presentation on types of global constraints 
(deterministic and non-deterministic) and more generally on types of constraints in constraint 
programming (elementary and composite), we refer the reader to Van Hentenryk (1989).  
 
In the model, resources are also declared discrete to facilitate search for solutions. Once a 
solution is found for the discrete resource problem, it is then easier to find a solution that respects 
the unary resource constraint. To our knowledge, this problem has not been formulated nor 
solved using the constraint programming technique. However, production scheduling problems 
(Jain and Grossmann, 2001) as well as vehicle routing problems (Pesant et al., 1996) were solved 
using the constraint programming technique and results were promising. 
 
Complementary to the problem formulation, a good search procedure should be designed. Several 
procedures are available in OPLStudio. In our problem, we use setTimes that assigns starting 
times to activities.  This procedure is efficient with discrete resources and when activity duration 
is fixed.  We also use assignAlternatives procedure that proposes assignments of operations to 
AGVs or inversely AGVs to operations.  It is a non deterministic instruction. Best results were 
obtained with a dichotomic search combined with Interleaved Depth-First Search (IDFS). This 
search strategy simulates a parallel depth-first search exploration of a search space on a sequential 
machine. The motivation is to avoid losing time due to early bad choices in the search. 
 
5 Experimentation 
 
The only complete test problems available in the literature are presented by Bilge and Ulusoy 
(1995). The test problems consist of 10 job sets with different routings (job-shop). Using these 10 
sets with the first four layouts presented in Figure 1, we generated the first 40 test problems. 
Average processing time on machines is of 9 time-units.  Average material handling or empty 
travel time is of 3.5 time units. 
 
In those problems, processing times on machines and material handling times are comparable. 
Sometimes, material handling times were longer. In many industrial settings, material handling 
times are much smaller than processing times on machines.  
 
In the beginning, these literature test problems were used without any modification. This 
constitutes our first set of problems presented in Table 3.  Later, modifications were introduced. 
These include: 
Adjusting material handling time: to become realistic and inferior to machining times.  An AGV 
travels at an average speed of 3 km/h.  Considering common dimensions of a shop and a lot 



production, handling times should be inferior to machining times. Handling times were 
consequently divided by 2 to obtain the second set of problems presented in Table 4. A third 
AGV was added to the fleet for this second set of test problems to obtain the third set presented in 
Table 5. 
 
A larger shop with a bidirectional network: the number of machines was doubled as well as the 
number of jobs in the shop to reach up to 16 jobs. Layout no. 4 was modified adding 4 more 
machines to generate layout no. 5. The Bilge and Ulusoy (1995) problems consider a 
unidirectional network.  Consequently travel time between machines x and y is not the same as 
that between y and x.  This hypothesis is of less importance as routing conflicts are not considered 
anyways. We consider a bidirectional network with the fifth layout to generate the fourth set of 
test problems presented in Table 7. Detailed distance matrixes, job routes and the processing 
times are presented in El Khayat (2003).  
 
Tests were performed on a Pentium 4, 2.53GHz personal computer using OPLStudio version 3.6 
that incorporates Cplex version 8. Result tables are presented hereafter.  Table 2 shows results for 
literature data. All results are optimal. Only two test problems experienced long solving time 
(3700 and 1549 seconds).  A third was solved in 66 seconds.  All the rest of the test problems 
were solved in less than 27 seconds. 
 
Problems code 
MP/ CP-nb.1-nb.2  or   MP/ CP-MA- nb.1-nb.2   
MP / CP Mathematical/ Constraint programming 
MA Material handling time adjusted 
nb. 1 Number of the job set  
nb.2 Number of the layout  
 

Data  Operations Machines AGVs Variables Constraints
Time 
(sec)  Objective Nodes Iterations

MP-1-1 21 4 2 551 339 0,11 72 344 1187 
MP-1-2 21 4 2 551 339 0,03 72 5 71 
MP-1-3 21 4 2 551 339 0,03 72 20 143 
MP-1-4 21 4 2 551 339 0,03 70 13 112 
MP-2-1 24 4 2 701 433 0,80 80 2328 61515 
MP-2-2 24 4 2 701 433 0,11 72 99 713 
MP-2-3 24 4 2 701 433 0,16 78 58 551 
MP-2-4 24 4 2 701 433 2,02 82 6913 19210 
MP-3-1 27 4 2 811 522 0,19 82 120 584 
MP-3-2 27 4 2 811 522 0,13 74 22 323 
MP-3-3 27 4 2 811 522 0,09 78 11 189 
MP-3-4 27 4 2 811 522 0,44 82 833 1779 
MP-4-1 33 4 2 1259 968 26,47 84 47329 155093 
MP-4-2 33 4 2 1259 968 66,97 74 116263 413777 
MP-4-3 33 4 2 1259 968 6,09 74 10395 34593 
MP-4-4 33 4 2 1259 968 17,72 83 32831 95476 
MP-5-1 21 4 2 551 338 0,13 59 306 797 
MP-5-2 21 4 2 551 338 0,06 58 119 303 
MP-5-3 21 4 2 551 338 0,11 56 22 157 
MP-5-4 21 4 2 551 338 0,11 59 112 376 
MP-6-1 30 4 2 1055 736 0,72 102 713 4391 
MP-6-2 30 4 2 1055 736 0,61 94 532 3125 



Data  Operations Machines AGVs Variables Constraints
Time 
(sec)  Objective Nodes Iterations

MP-6-3 30 4 2 1055 736 0,61 98 476 3238 
MP-6-4 30 4 2 1055 736 11,42 101 25344 71982 
MP-7-1 31 4 2 1055 643 3700 79 967748 6142831 
MP-7-2 31 4 2 1055 643 0,52 66 178 1223 
MP-7-3 31 4 2 1055 643 12,02 69 14846 50725 
MP-7-4 31 4 2 1055 643 1549 83 3917591 12782333
MP-8-1 34 4 2 1331 998 13,14 153 6777 45247 
MP-8-2 34 4 2 1331 998 2,77 145 1062 8841 
MP-8-3 34 4 2 1331 998 5,95 149 3129 17896 
MP-8-4 34 4 2 1331 998 5,08 155 4035 21606 
MP-9-1 29 4 2 991 718 1,55 97 1088 4204 
MP-9-2 29 4 2 991 718 0,70 91 221 1304 
MP-9-3 29 4 2 991 718 0,72 93 232 1492 
MP-9-4 29 4 2 991 718 15,94 97 17945 54180 
MP-10-1 36 4 2 1481 1115 7,22 127 4385 18321 
MP-10-2 36 4 2 1481 1115 3,78 123 3938 11609 
MP-10-3 36 4 2 1481 1115 1,28 126 720 4159 
MP-10-4 36 4 2 1481 1115 24,47 130 29867 68709 

Table 3. Results for the literature data  
 
Three strategies were used to reduce running time. The effect was remarkable especially for 
problems 7-1 and 7-4 that needed several days before proving optimality. Heuristic upper bound: 
if needed, the program is run and then stopped after the first solution found (in less than 30 
seconds) which is then used as an upper bound. Constraints 7 affect significantly the solution 
time. In the problems, time horizons starts at zero. However, this redundant constraint acts as an 
effective cut and reduces the solving time. This constraint also reflects a practical aspect that is 
starting the scheduling horizon at different points of time for some jobs or some resources. A 
valid constraint was also introduced to impose that at least one material handling operation is 
assigned to every AGV in the fleet. Test problems with shorter material handling times, where the 
AGVs are less demanded are easier to solve. All test problems are solved in less than 20 seconds. 
 

Data  Operations Machines AGVs Variables Constraints
Time 
(sec)  Objective Nodes Iterations

MP-MA-1-1 21 4 2 551 336 0,06 63 20 123 
MP-MA-1-2 21 4 2 551 336 0,02 61 3 72 
MP-MA-1-3 21 4 2 551 336 0,13 65 8 93 
MP-MA-1-4 21 4 2 551 336 0,14 65 8 93 
MP-MA-2-1 24 4 2 701 431 0,22 77 48 365 
MP-MA-2-2 24 4 2 701 431 0,14 74 38 400 
MP-MA-2-3 24 4 2 701 431 0,11 77 36 359 
MP-MA-2-4 24 4 2 701 431 0,11 76 20 316 
MP-MA-3-1 27 4 2 811 520 0,22 75 45 323 
MP-MA-3-2 27 4 2 811 520 0,20 72 41 461 
MP-MA-3-3 27 4 2 811 520 0,25 74 50 409 
MP-MA-3-4 27 4 2 811 520 0,14 73 33 264 
MP-MA-4-1 33 4 2 1259 966 9,58 61 13257 30758 
MP-MA-4-2 33 4 2 1259 966 0,34 57 50 307 
MP-MA-4-3 33 4 2 1259 966 0,31 58 48 312 



Data  Operations Machines AGVs Variables Constraints
Time 
(sec)  Objective Nodes Iterations

MP-MA-4-4 33 4 2 1259 966 0,31 61 51 385 
MP-MA-5-1 21 4 2 551 336 0,16 52 10 122 
MP-MA-5-2 21 4 2 551 336 0,09 53 23 127 
MP-MA-5-3 21 4 2 551 336 0,03 52 10 95 
MP-MA-5-4 21 4 2 551 336 0,03 51 0 94 
MP-MA-6-1 30 4 2 1055 734 0,44 95 209 1316 
MP-MA-6-2 30 4 2 1055 734 0,44 91 195 1108 
MP-MA-6-3 30 4 2 1055 734 0,42 92 165 1060 
MP-MA-6-4 30 4 2 1055 734 0,33 93 55 516 
MP-MA-7-1 31 4 2 1055 641 0,28 66 60 534 
MP-MA-7-2 31 4 2 1055 641 0,33 66 133 693 
MP-MA-7-3 31 4 2 1055 641 0,33 66 89 772 
MP-MA-7-4 31 4 2 1055 641 0,70 67 775 3014 
MP-MA-8-1 34 4 2 1331 996 4,38 147 4118 17447 
MP-MA-8-2 34 4 2 1331 996 19,08 143 20740 79123 
MP-MA-8-3 34 4 2 1331 996 8,83 145 9561 36738 
MP-MA-8-4 34 4 2 1331 996 4,69 148 4673 20022 
MP-MA-9-1 29 4 2 991 716 0,38 88 127 757 
MP-MA-9-2 29 4 2 991 716 0,38 88 154 914 
MP-MA-9-3 29 4 2 991 716 0,31 88 83 713 
MP-MA-9-4 29 4 2 991 716 0,36 87 106 809 
MP-MA-10-1 36 4 2 1481 1113 1,33 121 900 4009 
MP-MA-10-2 36 4 2 1481 1113 0,88 119 432 2002 
MP-MA-10-3 36 4 2 1481 1113 1,30 121 857 3933 
MP-MA-10-4 36 4 2 1481 1113 0,95 120 422 2235 
Table 4. Results for the literature data with adjusted material handling times 
 
The resource constraints affect significantly the solution time as shown by the results when 
increasing the number of AGVs from 2 to 3. 
 

Data Operations Machines AGVs Variables Contstraints
Time 
(sec)  Objective Nodes  Iterations

MP-MA-1-1 21 4 3 573 448 0,06 63 11 127 
MP-MA-1-2 21 4 3 573 448 0,14 61 7 97 
MP-MA-1-3 21 4 3 573 448 0,17 65 11 116 
MP-MA-1-4 21 4 3 573 448 0,05 65 11 145 
MP-MA-2-1 24 4 3 726 575 0,14 77 98 491 
MP-MA-2-2 24 4 3 726 575 0,17 74 60 399 
MP-MA-2-3 24 4 3 726 575 0,28 77 95 514 
MP-MA-2-4 24 4 3 726 575 0,31 76 101 572 
MP-MA-3-1 27 4 3 838 700 0,31 75 55 345 
MP-MA-3-2 27 4 3 838 700 0,25 72 43 299 
MP-MA-3-3 27 4 3 838 700 0,27 74 49 339 
MP-MA-3-4 27 4 3 838 700 0,28 73 68 366 
MP-MA-4-1 33 4 3 1293 1330 0,44 57 60 309 
MP-MA-4-2 33 4 3 1293 1330 0,56 54 120 464 
MP-MA-4-3 33 4 3 1293 1330 0,52 55 110 460 



Data Operations Machines AGVs Variables Contstraints
Time 
(sec)  Objective Nodes  Iterations

MP-MA-4-4 33 4 3 1293 1330 0,61 57 197 729 
MP-MA-5-1 21 4 3 573 448 0,08 52 11 117 
MP-MA-5-2 21 4 3 573 448 0,05 53 10 119 
MP-MA-5-3 21 4 3 573 448 0,16 52 8 111 
MP-MA-5-4 21 4 3 573 448 0,05 51 20 145 
MP-MA-6-1 30 4 3 1086 998 0,77 95 246 1839 
MP-MA-6-2 30 4 3 1086 998 0,75 91 269 2373 
MP-MA-6-3 30 4 3 1086 998 0,76 92 291 2070 
MP-MA-6-4 30 4 3 1086 998 0,67 93 236 1402 
MP-MA-7-1 31 4 3 1086 861 0,50 66 139 741 
MP-MA-7-2 31 4 3 1086 861 0,41 66 59 394 
MP-MA-7-3 31 4 3 1086 861 0,41 66 81 484 
MP-MA-7-4 31 4 3 1086 842 0,94 67 421 2920 
MP-MA-8-1 34 4 3 1366 1360 7,80 147 6093 20186 
MP-MA-8-2 34 4 3 1366 1360 16,95 143 11687 59454 
MP-MA-8-3 34 4 3 1366 1360 5,63 145 3390 17517 
MP-MA-8-4 34 4 3 1366 1360 2,88 148 1741 7287 
MP-MA-9-1 29 4 3 1021 980 0,42 88 133 750 
MP-MA-9-2 29 4 3 1021 980 41,03 88 62202 67998 
MP-MA-9-3 29 4 3 1021 980 0,38 88 110 749 
MP-MA-9-4 29 4 3 1021 980 0,44 87 127 807 
MP-MA-10-1 36 4 3 1518 1533 1,28 121 502 2833 
MP-MA-10-2 36 4 3 1518 1533 71,06 119 74705 94860 
MP-MA-10-3 36 4 3 1518 1533 3,81 121 2098 5600 
MP-MA-10-4 36 4 3 1518 1533 1,73 120 800 4189 
Table 5. Results for data with adjusted material handling times and 3 AGVs in shop 
 
According to these results, we have noticed that the problems relatively difficult to solve take less 
time if we introduce a third AGV in the system.  This is the case for problem PM-4-1 and PM-8-
2.  On the other hand, some problems easy to solve with 2 AGVs in the system take more time to 
solve if we introduce a third AGV.  This is the case for problem PM-9-2 where solving time 
passes from 0,38 seconds to 41,03 seconds.  For problem PM-10-2 solving time passes from 0,88 
seconds to 71,06 seconds.  Solving the problem with 2 and 3 AGVs gives important information 
on whether or not the AGV fleet in undersized, or if the resource constraints for AGVs are very 
tight. Instances of 8 machines/16 jobs are very difficult to solve and they need several hours and 
sometimes days before proof of optimality. However, the optimal solution is obtained in a few 
minutes. To test the constraint programming model, the same test problems were used. Results 
are encouraging, especially for bigger instances. The optimal solution is obtained in a few 
seconds.  Results are presented below:  
 
 
Data Operations  Machines  AGVs  Variables Constraints Time (sec) Objective  Failures Choice 

Points 
CP-1-1 21 4 2 154 170 0,05 72 65 176 
CP-1-2 21 4 2 154 170 0,00 72 4 69 
CP-1-3 21 4 2 154 170 0,00 72 4 63 
CP-1-4 21 4 2 154 170 0,05 70 32 188 
CP-2-1 24 4 2 175 210 0,38 80 188 1372 



Data Operations  Machines  AGVs  Variables Constraints Time (sec) Objective  Failures Choice 
Points 

CP-2-2 24 4 2 175 210 0,05 72 4 106 
CP-2-3 24 4 2 175 210 0,06 78 21 405 
CP-2-4 24 4 2 175 210 0,72 82 812 1275 
CP-3-1 27 4 2 189 252 0,27 82 119 868 
CP-3-2 27 4 2 189 252 0,05 74 9 195 
CP-3-3 27 4 2 189 252 0,14 78 6 110 
CP-3-4 27 4 2 189 252 0,36 82 204 1158 
CP-4-1 33 4 2 238 458 37,98 84 19246 36323 
CP-4-2 33 4 2 238 458 9,70 74 4993 7763 
CP-4-3 33 4 2 238 458 1,24 74 647 1622 
CP-4-4 33 4 2 238 458 7,56 83 4103 11043 
CP-5-1 21 4 2 154 170 0,06 59 38 132 
CP-5-2 21 4 2 154 170 0,02 58 4 57 
CP-5-3 21 4 2 154 170 0,02 56 10 77 
CP-5-4 21 4 2 154 170 0,03 59 50 142 
CP-6-1 30 4 2 217 348 0,25 102 55 442 
CP-6-2 30 4 2 217 348 0,05 94 8 53 
CP-6-3 30 4 2 217 348 0,05 98 10 135 
CP-6-4 30 4 2 217 348 0,97 101 675 842 
CP-7-1 31 4 2 217 302 294 79 733628 733648 
CP-7-2 31 4 2 217 302 0,39 66 223 700 
CP-7-3 31 4 2 217 302 0,23 69 42 690 
CP-7-4 31 4 2 217 302 1816 83 4942737 4942747
CP-8-1 34 4 2 245 460 0,33 153 36 1135 
CP-8-2 34 4 2 245 460 0,14 145 5 75 
CP-8-3 34 4 2 245 460 0,06 149 7 75 
CP-8-4 34 4 2 245 460 0,38 155 1502 1519 
CP-9-1 29 4 2 210 346 0,22 97 37 379 
CP-9-2 29 4 2 210 346 0,08 91 9 114 
CP-9-3 29 4 2 210 346 0,09 93 14 120 
CP-9-4 29 4 2 210 346 0,27 97 105 182 
CP-10-1 36 4 2 259 522 0,44 127 99 477 
CP-10-2 36 4 2 259 522 0,33 123 64 417 
CP-10-3 36 4 2 259 522 0,30 126 39 446 
CP-10-4 36 4 2 259 522 0,67 130 203 1067 
Table 6. Results of the constraint programming model for the literature data  
 
These first results presents a slightly better performance compared to the results obtained with the 
mixed integer programming model.  The 8 machines/16 jobs instances are solved optimally in a 
maximum of 60 seconds unlike the mixed-integer model. These problems have more variables 
and more constraints but results are very good. Problems with adjusted (shorter) material 
handling times with 2 and 3 AGVs also presented an excellent performance. Instances were 
solved in few seconds. 
 
We note that it is difficult to define limits for the models in terms of maximal number of variables 
and of constraints.  Solving times change depending on data.  It is a combination of several 
factors that determines the difficulty of the problem. In trail to test the limits, the (mt10) 10x10 



problem of Fisher and Thompson, available in the electronic OR-library, was solved.  Data 
corresponding to the material handling system was added and a 10 machine layout that represents 
an extension of layout 4 was considered. The constraint programming model presented excellent 
results. The optimal solution was obtained in 30 minutes and the proof of optimality was obtained 
in two hours.  The mixed integer model ran for one week without finding the optimal solution. 
Clearly, this benchmark problem is difficult to solve whether we consider material handling 
constraints or not.  However, adding the material handling constraints to the model did not 
deteriorate the performance in the constraint programming case. This resulted in obtaining a 
feasible schedule for a shop. 
 

Data Operations Machines AGVs Variables Constraints Time 
(sec) 

Objective Failures Choice 
Points 

CP-11-5 42 8 2 301 596 0,09 76 220 243 
CP-12-5 48 8 2 343 744 0,17 138 108 127 
CP-13-5 52 8 2 371 904 1,64 94 4939 4983 
CP-14-5 62 8 2 441 1450 60 131 21055 21090 
CP-15-5 42 8 2 301 596 0,16 84 10 484 
CP-16-5 54 8 2 385 1410 1,70 131 864 905 
CP-17-5 60 8 2 427 1088 0,13 132 83 105 
CP-18-5 68 8 2 483 1704 0,86 205 97 125 
CP-19-5 64 8 2 455 2261 11,13 114 3979 4013 
CP-20-5 60 8 2 427 1272 3.63 134 7566 7601 
Table 7. Results of the constraint programming model for the 8-machines shop 
 
6 Conclusion 
 
Constraint programming is a technique at crossroads of computer science, artificial intelligence 
and operations research. Using this technique in solving the integrated scheduling problem was a 
successful and promising experience. However, using a commercial solver for which we don’t 
know much about the underlying algorithms makes the performance unpredictable. This difficulty 
was confirmed by Marriott and Stuckey (1998). Choosing the appropriate model becomes an 
empirical exercise. For a problem, performance might vary according to the software used.  
 
On the practical side, the developments presented in this paper represent a dual tool to 
practitioners, with which the problem is solved to optimality using one technique or the other. 
Mathematical programming and constraint programming are not necessarily appropriate for the 
same type of problem. Scheduling problems present another difficulty. For the same number of 
operations we may experience different levels of difficulty when using either of the techniques.  
This is, in part, because of precedence constraints that impose temporal constraints on start time 
variables. These differ from a test problem to another.  On the other hand, processing time on 
resources combined with disjunction constraints determines how critical a resource is. In our 
tests, we noticed that for some instances constraint programming had a better performance 
compared to mathematical programming, and for other instances, it was the inverse. Development 
of an efficient tool based on a script integrating the two methods is undergoing. 
 
Material handling resource constraints influence the solving time for some instances. When we 
increase the number of AGVs, solution time rapidly decreases. This is the case for the two 
solution methods used. Sometimes, adding a resource does not change the value of the objective. 
However, in other instances, the value of the objective decreases. If this happens repeatedly when 
solving most of the problem instances for a certain operational system, it justifies the addition of a 
material handling equipment. Hence, the scheduling tool can be used to handle design issues. The 
speed of solution allows the evaluation of different scenarios to determine resource requirements. 



Tight resource constraints for machines might also be problematic. The two proposed models can 
be easily modified to account for alternative machines.   
 
Future research include testing larger instances, conflict avoidance and limited buffer capacities 
in a job-shop setting. Also, we think that bottleneck resources is an interesting concept on which 
Adams et al. (1988) based their important development of the Shifting Bottleneck procedure. 
Using their heuristic, they optimally solved the (10*10) test problem presented by Muth and 
Thompson (1963) that remained unsolved for more than 20 years. Their method was generalized 
by Ramudhin and Marier (1996) for solving different classes of scheduling problems. We think it 
is important to develop methods to characterize scheduling problems in terms of resource 
criticality in a formal fashion. This should help choosing the appropriate solution approach.  
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