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This paper is concerned with the application of the technique of genetic algorithms to
solve the problem of optimal facilities’ layout in manufacturing systems design. A mathe-
matical model is developed to examine the machines’ layout and the pattern of material
flow for the typical job shop and flow shop manufacturing environments. The analysis also
considers various practical aspects, such as the constraints of restricted areas and
reserved machinery locations, and also the irregularity of the shapes of manufacturing
plants, etc. A genetic approach is developed to provide the optimal solution to the facili-
ties’ layout problem. The effectiveness of the proposed approach is evaluated with
numerical examples. Indeed, the results indicate that the proposed approach provides an
effective means to solve problems in facilities’ layout. © 1998 Elsevier Science Ltd. All

rights reserved
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Introduction

The facility layout design has been regarded as the
key to improve plant productivity. Its objective is to
obtain the most effective machine arrangement, so
that the material handling costs are minimized.
Indeed, an effective facility layout can reduce signifi-
cantly the manufacturing lead time'->. However, the
facility layout problem belongs to the class of non-
polynomial hard (NP-hard) problems which are
unsolvable in polynomial time*. It suggests that the
problem’s complexity increases exponentially with the
number of machinery locations. For instance, a
system consisting of M machines and N machinery
locations (N >M) will comprise a solution space with
the size N. When N is large, it is difficult, if not
impossible, to produce the optimal solution within a
reasonable time, even with the support of a powerful
computer’.

In the past, the facility layout problem was formu-
lated as a quadratic assignment problem®. Since then,
a number of attempts have been published to solve
the problem by using various techniques’, including
the tree search algorithm®, and the binary mixed
integer programming technique’. However, such

*Corresponding author.
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approaches still require a substantial amount of
computational effort when the problem size is large.
In recent years, the Group Technology (GT) that
exploits the similarities in product processing has
been proposed as an innovative approach to solve the
problem. In order to simplify the material flow
patterns, numerous grouping techniques have been
developed to configure the layout of machines. In
addition, various clustering heuristics are proposed'’,
and the unit-valued entries of the part-machine
incidence matrix are grouped into blocks along the
matrix’s diagonal. Another methodology involves the
grouping of machines progressively, drawing refer-
ence from the similarity coefficients that was first
proposed by McAuley', and later improved by a
number of researchers, such as Seifoddini and
Wolfe'?. In addition, a machine chain similarity
coefficient was recently proposed by Kazerooni et
al.”, so as to accommodate both the direct and
indirect relationships among machines simultane-
ously. The network decomposition heuristic and
mathematical programming are also frequently used
to solve the problem'-". However, these methods
usually over-simplify the problem to such an extent
that the resulting solution becomes unrealistic. Most
grouping methods do not solve the facility layout
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problem directly. In fact, these methods generally
assume that the problem can be solved easily once
the machine groups have been established. In fact,
the whole problem is decomposed into a number of
sub-problems, which are easier to solve. However, a
significant body of literature on facility layout'®'” has
pointed out the importance of machine arrangement
to achieve line flows and to reduce materials handling
costs. An effective facility layout has a definitely
significant impact on traffic congestion and material
flow patterns. Although the facility layout problem
can be solved after the establishment of machine
groups, the original scope of the problem is inevitably
limited by this approach.

The present research aims at developing a general
methodology to determine the optimal layout of
machines by simplifying the material flow within a
manufacturing plant. A mathematical model is intro-
duced to study the layout of machines and the
pattern of material flow for the typical job shop and
flow shop manufacturing environments. In addition,
the analysis also considers the capacities of the
different manufacturing resources, the constraints of
restricted areas and reserved machinery locations, the
irregularity of the shape of manufacturing plants, and
so on. An approach derived from genetic
algorithms'™" is developed to provide the optimal
solution to the facility layout problem. Unlike some
of the existing genetic approaches*®?, the proposed
approach determines the optimal facility layout
without initial involvement of the clustering of
machines and parts. The effectiveness of the
proposed approach is evaluated by using benchmark
problems excerpted from Chan and Tansri*’, and
Kazerooni et al.”. Indeed, the theoretical results so
obtained show that the proposed approach provides
an effective means to solve facility layout problems.

Mathematical model

Facility layout design is the study of the assignment
of M machines to N machinery locations (N>M) in a
manufacturing plant. During the manufacturing
process, materials flow from one machine to the next
appropriate machines, until all the processes are
completed. The objective of solving the facility layout
problem is therefore to minimize the total material
handling cost of the system. Indeed, the following
aspects of the manufacturing system are considered:

(a) Plant configuration layout, including information
of the restricted areas and the reserved
machinery locations. In addition, the plant
configuration layout can be irregular in shape.

(b) Cost table that qualifies the distance based
material handling costs between a pair of
machines.

(c) Part-wise production data, which provides infor-
mation about production volumes, production

routings, and the unit processing time for each
manufacturing operation of the part type i
(i=1,2,...,1) during the planning period.

The following notations are used in the develop-
ment of the mathematical model:

unit material handling cost between machines

m, and m, (m;,m,=1,2,....M and m,#m,)

per unit distance

D rectangular distance between machinery
locations n, and n, (n,n,=12,...,N and
n,#n,)

E, effective manufacturing time (capacity) of

machine type m (m =1,2,...,5)
wm,  amount of material flow among machines m,
and m, (m;,m,=1,2,...,M and m, #m,)

1 number of part types manufactured by the
manufacturing plant

L(m) machinery location, where machine m
(m=1,2,...,M) is assigned to

M total number of machines contained in the
manufacturing system

N number of machinery locations contained in
the plant configuration layout

0., number of type m machines (m =1,2,...,5)
required in the manufacturing system

S number of machine types

i unit processing time for part type i
i=12,....,1) on machine type m
m=12,..9)

12 production volume of part type i

(i=1,2,...,I) demanded during the planning
period

The demand of the parts are assumed to be known
and fixed during the planning period. In order to
prevent any shortage of parts, the production capacity
must be sufficiently large. Hence, the minimum
number of machines Q,, required in the manufac-
turing system is calculated as follows:

On= ’- lé:] Vitim/Em.I (m =1,2, ,S) (1)

where [ X1 is an integer which is just greater than the
real number X.

In some cases, when rectangular distances are
more appropriate than straight-line distances to be
used in industrial settings®, the cost function is
defined as:

M M
Totalcost=¢p= % % . F o 2C i D Lm L o

mi=1 ma=

(m,#m.) )

The objective is to obtain an optimal facility layout
plan for the machines by minimizing the total
material handling cost incurred in the system.
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Genetic algorithms

When introduced initially by Holland"®, the genetic
algorithm is a stochastic global search technique. It
can explore the solution space intelligently by using
the concept taken from the natural genetics and
evolution theory”. Indeed, the genetic algorithm has
been demonstrated to be robust and effective in
various task domains, both theoretically and empiri-
cally, and even in the presence of non-linearity, multi-
modality, noise, etc., in the model describing the
problem®. In the search process, candidate solutions
in the solution space are encoded in the form of
symbolic strings known as chromosomes. The simula-
tion of genetic evolutionary processes is conducted in
a pool of chromosomes. This pool is known as the
population, and the number of chromosomes
contained within the population is called the popula-
tion size, P. The simulation of genetic evolutionary
processes is performed on an iterative basis. The
search algorithm extracts and analyses the topological
information of the searched space, and can therefore
guide the search to advance along a promising direc-
tion. Each iteration of the search process is called a
generation. Indeed, the outline of the genetic search
process used in this paper is summarized as follows:

Step 1. Generate an initial population of chromo-
somes randomly with a population size of P.

Step 2. Decode all chromosomes and evaluate the
objective function values of their corresponding
candidate solutions.

Step 3. Determine the fitness values of the chromo-
somes by using the objective function values so
obtained.

Step 4. Remove the worst P xR] chromosomes in
accordance with their fitness values, and replace
them by duplicating and inserting the best LP x R]
chromosomes into the current population. |X] is an
integer which is just smaller than the real number
X, and R is the percentage of replication of the
well-performed chromosomes in the current
generation.

Step 5. Apply the selection operator to select P
chromosomes from the current population. The
selected chromosomes are placed in a mating pool
as parent chromosomes.

Step 6. Choose a pair of parent chromosomes from
the mating pool without replacement. The cross-
over and mutation operators are then applied to
produce a pair of new chromosomes.

Step 7. Insert the new chromosomes into a new
population. If the population is not full, go to Step
0.

Step 8. Check the pre-specified automatic stopping
criterion. If the stopping criterion is reached, the
search process stops. The overall best chromosome
will be selected and decoded. The corresponding
candidate solution will be chosen as the final
solution. Otherwise, proceed to the next generation

Figure 1 An example of a plant configuration layout.

with the current population replaced by the new
one, and go to Step 2.

String representation

In order to apply the technique of genetic algorithms
to solve facility layout problems, a string representa-
tion scheme is required to encode the candidate
solutions in the solution space in the form of
symbolic strings, called chromosomes. In this paper,
the entire manufacturing plant is divided into N grids
(say n,xn,), and each grid represents a machinery
location. The entire facility layout plan can thus be
encoded as a chromosome by using a n, xn, matrix.
This string representation scheme can be conveni-
ently illustrated by using a simple example. Figure [
shows a plant containing 10 grids, with two of the
grids labeled by a symbol ‘“** and a number 5. A
location assigned with a symbol “*’ represents a
restricted area where no machine is allowed to be
located, whilst a location assigned with a number
represents a reserved machinery location where only
the specified machine is allowed to be placed. If there
are seven machines in the manufacturing system, one
of the possible facility layout plans is shown in Figure
2. This plan can be encoded as a chromosome, S, by
using a 4 x 3 matrix as shown below:

7 6 —1
05 3
S=| -1 1 4 2)
10 2
7 6 *

Figure 2 A particular facility layout plan.
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Table 1 Part list and production data

pP1 P2 P3
Production routing 1-3-5 or 1-4-5 2-3-6 or 2-3-7 or 2-4-6 or 2-4-7 5-6 or 5-7
Unit op. proc. Time (min.) 6-2-5 5-8-5 2-4
Production volume 20 10 10

where —1 and 0 represent a restricted area and a
dummy machine respectively.

Fitness function

As mentioned previously, the objective of solving a
facility layout problem is to obtain an optimal facility
layout plan by minimizing the total material handling
cost (eqn (2)) incurred in the system. The material
handling cost, however, does not depend solely on
the facility layout plan. The cost is also determined by
the type of machine loading policy to be used. Some
machine loading policies commonly practised in
industry include the First-Come-First-Serve (FCFS),
the Shortest Processing Time First (SPTF), and the
Longest Processing Time First (LPTF), etc. Never-
theless, the management usually establishes its own
favourite machine loading policy in accordance with
the manufacturing nature of the parts. In general,
parts are manufactured by undergoing a series of
machinery operations based on their production
routings. A list of machinery operations is established
for each type of machine to record its loading details.
This includes the information of the part types that
are going to be manufactured, such as their produc-
tion volumes, and their unit processing times, etc.
When there is more than one machine (e.g.,
my, m, ...my ) for a machine of type m (where
m=1,2,...,5), the application of an FCFS policy
means that the allocation of the machining opera-
tions of a part to machines begins from the first
machining operation, ie., from the top of the
machining operation list, to the last machining opera-
tion at the bottom of the list. It should be noted,
however, that whenever a machine is fully loaded
during the allocation process, the remaining
machining operations will be allocated to the next
available machine, until all the listed machinery
operations are successfully allocated. On the other
hand, an SPTF policy means that the allocation of
the machining operations of a part to machines
depends on the processing times required. The
machining operation with the shortest processing
time is allocated first, and then followed by the
machining operation with the next shortest processing
time, with the rest following suit, until all machining
operations in the list are allocated. The LPTF policy,
however, works in the opposite way, where the
machining operation with the longest processing time
is given the highest priority to be allocated during the
allocation process. The machining operation with the
next longest processing time follows next, and so on,
until all the machining operations are allocated.

A simple example is used to illustrate how different
machine loading policies affect the material handling
cost of a facility layout plan. In this example, there
are seven machines in the manufacturing system,
where the machines listed in each of the following
brackets belong to the same machine type: (3, 4) and
(6, 7). Figure 2 presents the machine’s location in the
facility layout plan. Table 1 shows a part list
containing the information of the part types, their
production routings, the operation processing time,
and the production volumes. Table 2 shows a cost
table containing the information of unit material
handling cost and the effective capacity of each
machine type. The machine loading plans derived
from the different machine loading policies are
summarized in Table 3. Table 3 also presents the slight
variations among the different machine loading plans.
As a result, the material flow patterns under the
policies of FCFS, SPTF, and LPTF are also different,
and their corresponding total material handling costs
(eqn (2)) are equal to $520, $524, and $500 respec-
tively. The LPTF policy leads to the minimum
material handling cost.

The total material handling cost of a candidate
solution is then converted to the fitness value of its
corresponding chromosome. In this paper, the fitness
value of a chromosome is determined by using the
following equation:

Fitness = ® = 1/¢ 3

where ¢ is the total material handling cost. A candi-
date solution with a small total material handling cost
will lead to a chromosome with a large fitness value.
As a result, the chromosome is given a greater
chance to be selected as a parent chromosome.

Selection, crossover and mutation operators

Selection operator

The selection operator is used to guide the search
direction of the genetic search process. It leads to an
overall improvement of the chromosomes’ cost

Table 2 Material handling cost ($ per trip) and effective
capacities of machines

Effective
From/To 2 3or4 5 6or7 capacity (min)
1 0 20 0 0 150
2 10 0 0 100
3or4 20 10 70
5 10 120
6or7 - 70
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Table 3 Machine loading plans
FCFS SPTF LPTF
Part Unit proc. Prod. Part Unit proc. Prod. Part Unit proc. Prod.

m type time (min) vol. m type time (min)’ vol. m type time (min) vol.

1 Part 1 6 20 1 Part 1 6 20 1 Part 1 6 20

2 Part 2 5 10 2 Part 2 5 10 2 Part 2 5 10

3 Part 1 2 20 3 Part 1 2 20 3 Part 2 8 8
Part 2 8 3 Part 2 8 3 4 Part 2 8 2

4 Part 2 8 7 4 Part 2 8 7 Part 1 2 20

5 Part 1 5 20 5 Part 3 2 10 5 Part 1 5 20
Part 3 2 10 Part 1 5 20 Part 3 2 10

6 Part 2 5 10 6 Part 3 4 10 6 Part 2 5 10
Part 3 4 5 Part 2 5 6 Part 3 4 5

7 Part 3 4 5 7 Part 2 5 4 7 Part 3 4 5

performance as the search proceeds. The potential
chromosomes with higher fitness values are given
higher chances to be selected as parents to breed new
chromosomes. The parent chromosomes are placed
in a mating pool where crossover and mutation take
place. In each generation, the worst P x R} chromo-
somes are removed from the current population in
accordance with their fitness values. The best [P x R
chromosomes are then duplicated and inserted into
the same population to replace the rejected chromo-
somes. Afterwards, the selection operator is applied
to select parent chromosomes from the population in
accordance with the selection parameter, Ag, of the
chromosome. The selection parameter, Ag.,.. of a
chromosome is defined as:

Zsaee = D/ T O )
where ® and 2 @ are the fitness values of the
chromosome, and the sum of fitness values over the
entire population respectively.

In this paper, the selection scheme of the
remainder stochastic sampling with replacement
proposed by Brindle® is adopted. In this case, the
expected number of chromosomes, e, for each

p?
chromosome in the mating pool is calculated by:

ep = /“Select X P

®)

Chromosomes are then reproduced and placed into
the mating pool with the number of samples equal to
the integer part of their e, values. The fractional parts
of the e, values are used to calculate weights in the
traditional roulette wheel selection procedure with
the probability of selection, P, for each chromo-
some defined as:

Psgeq = frac(e,)/ 2. frac(e,) (6)
where frac(e,) is the fraction part of the e, value, and
2 frac(e,) is the sum of the fraction parts of the e,
values over the entire population. The chromosomes
are then randomly selected in accordance with their
own probabilities of selection, Pg,.., to fill the
remaining slots in the mating pool.

Crossover operator

In general, the crossover operator transfers a portion
of genetic codes between two parent chromosomes
selected from the mating pool. It leads to an exploita-
tion of the solution space by introducing variations to
the parent chromosomes. Firstly, a pair of parent
chromosomes is chosen from the mating pool without
replacement. The probability of applying the cross-
over operator to these two chromosomes is called the
probability of crossover, P, If the decision is not to
cross the chromosomes, they will be cloned to
produce a pair of offspring chromosomes, where the
offspring chromosomes are identical to their parents.
Otherwise, the parent chromosomes will be crossed
to produce two offspring chromosomes by using the
crossover operator. In this paper, a new crossover
operator is proposed, and a simple example is used to
illustrate its operation. In order to facilitate the
presentation, the pairs of parent and offspring
chromosomes are identified as (§1, $2) and (CI, C2)
respectively. Consider a pair of parent chromosomes
(81, §2) shown below:

____________

Firstly, a cutting section is chosen at random. The
genes bounded within the cutting section, i.e., (2, 5, 6,
9) in S1, and (5, 7, 3, 8) in §2, are exchanged, so that
a portion of genetic codes from S1I is transferred to
S$2, and vice versa. The structures of the resultant
chromosomes then become:

4
§2°= 2
9

At this stage, several genes are found to exist in
more than one position in the resultant chromosomes
(e.g., 3,7, and 8 in SI' and 2, 6 and 9 in $2’). These
genes are termed as repeated genes in the following
discussion. Indeed, each pair of repeated genes
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indicates that the machine represented by the value
of that pair of genes has been allocated in two
different machinery locations in the layout plan. In
this connection, modification of the layout plan is
necessary before it can be accepted. Since S1' is
produced by changing the genes in S from 2 to 5, 5
to 7, 6 to 3, and 9 to 8, a backward replacement
procedure can be implemented to change the values
of those repeated genes outside the cutting section
from 3 to 6, 7 to 2 (the combined result of changing
from 7 to 5 and then 5 to 2), and 8 to 9. Similarly, the
repeated genes outside the cutting section in $2’ can
also be replaced by changing 2 to 7, 6 to 3, and 9 to
8. Thus the offspring chromosomes become:

______

Mutation operator

The mutation operator is used to safeguard the
search process from premature convergence to a local
optima. It is an immediate operation that follows the
crossover operation. It attempts to rearrange the

Table 4 Flow of materials between machines (number of trips per
period)

structure of a chromosome at random. The
probability of mutating a single gene is called the
probability of mutation, Py, Which is usually a
small number. For each gene in a chromosome, an
arbitrary choice is made to decide whether the
mutation operation is performed or not. If the
decision is not to perform the mutation operation,
the gene will be kept unchanged. Otherwise, the gene
is mutated by swapping its contents randomly to the
other gene, on the condition that neither of the
genes’ contents is equal to —1. If the content of a
gene is equal to —1, it means that the gene is repre-
senting a restricted area, and no mutation should be
allowed. The mutation operation is then applied to
the next gene, and the entire process is repeated,
until all genes in the chromosome are tried.

Numerical examples
Example from Chan and Tansri (1994)

The effectiveness of the proposed approach can be
conveniently illustrated by using numerical examples.
The first example is taken from Chan and Tansri®
and the system specifications are presented in
Tables 4 and 5. The plant configuration layout is a 3
by 3 grid. In order to obtain a robust design, a certain
percentage of chromosomes with high fitness values
will be retained as the chromosomes for the next

Table 5 Material handling cost between machines ($ per trip)

From/To 2 3 4 5 6 7 8 9 From/To 2 3 4 5 6 7 8 9
1 100 3 0 6 35 190 14 12 1 1 2 3 3 4 2 6 7
2 6 8 109 78 1 1 104 2 12 4 7 5 8 6 5
3 0 0 17 100 1 31 3 5 9 1 1 1 1
4 100 1 247 178 1 4 1 1 1 4 6
5 1 10 1 79 5 1 1 1 1
6 0 1 0 6 1 4 6
7 0 0 7 7 1
8 12 8 1

6 2 5 7 1 6 4 3 7 5 8 4

I 9 8 3 9 2 8 9 1 2 9 3

7 3 4 4 8 5 5 2 6 6 1 7

5 2 6 4 8 5 7 3 4 6 1 7

8 9 1 3 9 2 1 9 8 2 9 3

4 3 7 7 1 6 6 2 5 5 8 4

Figure 3 Optimal facility layouts for the Chan and Tansri * example.
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generation. The general guideline proposed by Chan
and Tansri* is adopted to determine the values of the
five genetic parameters. The genetic parameters are
the population size, P, the generation size, G, the
percentage of replication of well-performed chromo-
somes in each generation, R, the probability of cross-
over, P, and the probability of mutation, Py
Nineteen sets of experiments are conducted to
determine an appropriate combination of the popula-
tion size, P, and the generation size, G. In order to
evaluate the performance of the search processes in
connection with the different combinations of the
population and generation sizes, the experimental
results are compared with the global optimal
solutions. The exhaustive search method is applied to
determine the global optimal solutions, and eight

Table 6 The experimental settings for different combinations of
the population and generation sizes

Expt. P G No. of trials % of exploration
1 20 10 200 0.0551
2 40 10 400 0.1102
3 100 10 1000 0.2756
4 200 10 2000 0.5511
5 500 10 5000 1.3779
6 20 20 400 0.1102
7 40 20 800 0.2205
8 100 20 2000 0.5511
9 200 20 4000 1.1023

10 20 40 800 0.2205

11 40 40 1600 0.4409

12 100 40 4000 1.1023

13 200 40 8000 2.2046

14 20 100 2000 0.5511

15 40 100 4000 1.1023

16 100 100 10000 2.7557

17 20 200 4000 1.1023

18 40 200 8000 2.2046

19 10 500 5000 1.3779

R=05%, Py = 0.6 and Py, = 0.001.

optimal machine layouts are obtained. Figure 3 shows
the optimal machine layouts, and the corresponding
material handling cost is $4818 (this result is different
from that of Chan and Tansri”’, which is probably due
to some printing errors in their paper). In addition,
three widely used crossover operators are also
included in these experiments. They are the partially
mapped crossover (PMX)*, the order crossover
(OX)”, and the cycle crossover (CX)*. These three
crossover operators are originally proposed to solve
travelling salesman problems. Recently, Chan and
Tansri* have attempted to use these operators to
solve facility layout problems, and have reported that
the PMX operator did provide excellent results. It is
therefore appropriate to include these three opera-
tors in the experiments, in order to verify the effec-
tiveness of the proposed crossover operator. To
ensure fairness, the same set of selection and
mutation operators are used to evaluate the perform-
ance of the crossover operators.

In general, an increase in the sizes of population
and generation can produce better solutions, since
the number of sampling solutions from the solution
space is enlarged. However, the computational effort
in searching the space will also increase, which is
contradictory to the original objective of using
genetic algorithms to obtain reasonable solutions by
minimal evaluations. Hence, it is appropriate to limit
the total number of evaluations in each experiment to
less than 3% of the total number of solutions in the
solution space. In this example, there are 362880 (9!)
possible solutions in the solution space, and thus the
maximum number of evaluations should be less than
10886. Table 6 lists the suggested combinations of the
population and generation sizes. Each experiment is
run 10 times with the genetic parameters of R = 5%,

Table 7 The experimental results for different combinations of the population and generation sizes

Proposed crossover PMX ()¢ CX
Expt. Best Avg, # Best Avg. # Best Avg, # Best Avg. #
1 5233 5504.4 0 4938 5434.8 0 5307 5480.9 0 5026 562222 0
2 5040 5286.7 0 5039 5263.8 0 5032 5266.5 0 5133 5409.8 0
3 4818 5024.8 1 4938 5164.9 0 4992 5216.1 0 5020 5201.7 0
4 4818 4891.4 2 4818 4966.8 2 4818 5046.5 1 4818 5086.9 1
5 4818 4833.2 7 4818 4892.3 5 4818 4947.7 1 4818 4911.4 1
6 5225 5481.2 0 4938 5402.1 0 5307 5480.9 0 5026 5589.6 0
7 4927 5174.6 0 4992 5184.6 0 5032 5198.2 0 5133 5402.1 0
8 4818 4889.1 4 4818 4991.7 2 4927 5125.8 0 4818 5145.2 1
9 4818 4846.5 5 4818 4919.8 2 4818 4960.7 1 4818 4973.8 3
10 5225 5462.2 0 4938 5402.1 0 5307 5471.8 0 5026 5566.5 0
11 4927 5163.8 0 4992 5180.7 0 5014 5182.0 0 5133 5378.7 0
12 4818 4871.4 4 4818 4919.5 3 4862 5006.7 0 4818 5090.5 1
13 4818 4840.0 5 4818 4887.9 4 4818 4894.7 4 4818 4902.9 4
14 5225 5453.0 0 4938 5337.0 0 5020 5326.9 0 5026 5471.0 0
15 4818 5141.6 1 4927 5122.4 0 4872 5156.2 0 5039 5304.5 0
16 4818 4866.0 5 4818 4863.9 4 4818 4912.5 2 4818 4988.9 2
17 4818 5303.9 1 4938 5224.6 0 4862 5229.4 0 4862 5266.3 0
18 4818 5141.4 1 4862 5088.4 0 4818 5061.3 1 4862 5129.9 0
19 4818 5184.3 1 4818 5166.1 1 4818 5115.5 1 4862 5272.0 0
Total 37 23 11 13

Best = The material handling cost of the best solution among the 10 runs. Avg. = The average of the best material handling costs among the
10 runs. # = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818.
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Pers =0.6, and Pygye =0.001. The experimental

results (Table 7) are expressed in terms of:
Table 8 The experimental settings for studying the effects of S( n P

changing R, Pcwus and Py, 1. The material handling cost of the best solution
Expt. R (%) Expt. P Expt. Prtucne among the 10 runs.

I o o 05 " 0,000 2. The average of the best material handling costs
21 2 28 0.6 34 0.001 among the 10 runs. _

22 4 29 0.7 35 0.003 3. The number of runs needed to obtain one of the
23 5 30 0.8 36 0.005 eight optimal solutions.

24 6 31 09 37 0.010

25 8 32 L0 38 0.030 In Table 7, the number of successful runs required
26 10 39 0.050

to obtain one of the eight optimal solutions among

Table 9 The experimental results for studying the effect of changing R

Proposed crossover PMX (0).4 CX
Expt. Best Avg, # Best Avg, # Best Avg. # Best Avg. #
20 4818 5043.0 2 5065 5218.7 0 5065 5218.7 0 4978 51229 0
21 4818 4946.1 4 4872 5083.1 0 4872 5083.1 0 4818 5033.2 1
22 4818 4856.0 4 4862 5059.5 0 4862 5059.5 0 4818 5092.5 1
23 4818 4889.1 4 4818 4991.7 2 4927 51258 0 4818 51452 1
24 4818 4936.9 4 4818 5048.6 1 4818 5048.6 1 4872 5165.4 0
25 4818 4962.7 1 4938 5080.4 0 4938 5080.4 0 4938 51778 0
26 4818 4943.6 3 4818 5052.6 1 4818 5052.6 1 4938 5133.8 0
Total 22 4 2 3

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The genetic parameters are
P =100, G =20, P¢,, = 0.6 and Py, = 0.001.

Table 10 The experimental results for studying the effect of changing P,,.,

Proposed crossover PMX (0).4 CX
Expt. Best Avg, # Best Avg. # Best Avg. # Best Avg. #
27 4818 4970.2 2 4818 5094.8 1 4927 5126.9 0 5039 5189.5 0
28 4818 4856.0 4 4818 4991.7 2 4818 5048.6 1 4818 5033.2 1
29 4818 4898.7 1 4818 5011.3 2 4818 5061.9 1 4818 5026.3 3
30 4818 4905.6 2 4818 4979.3 2 4872 5070.3 0 4862 5061.2 0
31 4818 4942.7 5 4818 4992.4 2 4862 5030.9 0 4818 4993.5 3
32 4818 4929.0 1 4818 4983.5 1 4818 5014.8 1 4862 5003.5 0
Total 15 10 3 7

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The values of the genetic
parameters for the different crossover operators are: the proposed crossover operator: P =100, G =20, R=4% and Py, = 0.001; the
PMX operator: P=100, G=20, R=5% and Py, =0.001; the OX operator: P=100, G =20, R=6% and Pyy.. =0.001; the CX
operator: P =100, G =20, R = 2% and Py, = 0.001.

Table 11 The experimental results for studying the effect of changing Py,

Proposed crossover PMX [0).¢ CX
Expt. Best Avg, # Best Avg, # Best Avg, # Best Avg. #
33 4818 4887.8 3 4818 4983.9 3 4862 5086.7 0 4818 5087.1 1
34 4818 4856.0 4 4818 4979.3 2 4818 5014.8 1 4818 4993.5 3
35 4818 4961.6 2 4818 4951.6 1 4818 5059.0 1 4818 5012.2 1
36 4818 4887.8 2 4862 5013.7 0 4872 5117.4 0 4818 4994.1 2
37 4818 4881.2 2 4818 4987.5 1 4862 5073.8 0 4818 49933 1
38 4818 4895.8 4 4818 4985.7 1 4818 5014.9 1 4818 4986.9 3
39 4818 4944.6 2 4862 5029.3 0 4872 5010.6 0 4818 4955.7 1
Total 19 8 3 12

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The values of the genetic
parameters for the different crossover operators are: the proposed crossover operator: P =100, G =20, R = 4% and P, = 0.6; the PMX
operator: P =100, G =20, R=5% and P, = 0.8; the OX operator: P =100, G =20, R = 6% and P, = 1.0; the CX operator: P = 100,
G =20,R=2% and P, =09.



A genetic algorithm for facility layout problems: K.L. Mak et al.

121

the operators PMX, OX, and CX are 23, 11, and 13,
respectively. The results agree with those provided by
Chan and Tansri”, except for the OX operator.
Indeed, the results correlate with the original expec-
tations, since the PMX operator performs better than
the OX and CX operators in solving facility layout
problems. However, the proposed crossover with 37
successful runs performs even better than the PMX
operator. In addition, the proposed crossover
operator also works well in a number of combinations
of the population and generation sizes, including
(P =500,G =10), (P=100,G=20), and (P =200,
G =20), etc. The PMX, OX, and CX operators

Table 12 The optimal values of the genetic parameters

Proposed

crossover PMX 0X CcX

200 200 200 200
40 40 40 40
4 5 6 2
Cross 0.6 0.8 1.0 0.9
Pre 0.001 0.001 0.001 0.030

Qv

o

8000.00

O-

7500.00 +

7000.00 1

6500.00 4

6000.00 +

Material handling cost

5500.00 ¥+

5000.00 ¢

provide good results only in a few cases. This prelimi-
nary result shows that the proposed crossover
operator is more robust than the PMX, OX, and CX
operators in solving facility layout problems.

Sensitivity analysis of the R values

Besides the population and generation sizes, the
solution quality can also be affected by the
percentage of replication of well-performed chromo-
somes in each generation, R, the probability of cross-
over, P and the probability of mutation, Py
The effects of these genetic parameters on the
solution quality are studied in accordance with the
experimental settings depicted in Table §. In
conducting experiments (20-26), each experiment is
run 10 times with the genetic parameters P = 100,
G =20, Pqo=0.6, and Py =0.001. Table 9
presents the experimental resuits. The results indicate
that the proposed crossover operator outperforms the
PMX, OX, and CX operators in terms of the number
of successful runs. In addition, the proposed cross-
over operator works well in a wide range of R, which
implies that it is insensitive to the change of R. Once

—&— Proposed crossover
—xX—PMX

—t— OX

—0—CX

4500.00

Figure 4 Results of the generation-average total cost.
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-
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again, it shows that the proposed crossover operator
is quite vigorous.

Sensitivity analysis of the P, values

The best values of R for each crossover operator are
then used to study the effect of changing P on the
solution quality. The selected values of R for the
proposed crossover operator, and for the PMX, OX
and CX operators are 4%, 5%, 6% and 2% respec-
tively. Each of the experiments (27-32) is run 10
times, with the genetic parameters P =100, G =20
and Pyua. =0.001. The experimental results in
Table 10 show that the proposed crossover operator
works well at probability 0.6 and 0.9. However, it
seems that the proposed crossover operator works
better at probability 0.6, since its corresponding
average value ($4856.0) is less than that obtained at
probability 0.9 ($4942.7). The best values of the
probability of crossover for the PMX, OX, and CX
operators are 0.8, 1.0, and 0.9, respectively. These
results are slightly different, when compared with
Chan and Tansri”’, which is probably due to the

5500.00 T

5300.00 7

5200.00 1

5100.00 -

5000.00 <

4900.00

Material handling cost

4800.00 4

4700.00 4

4600.00 T

difference in the selection operation. Both the
proposed crossover operator and the PMX operator
have successfully located the global optimal solution
in all experiments. However, the success rate of the
proposed crossover operator is higher than that of
the PMX operator, which reveals that the proposed
crossover operator is more reliable.

Sensitivity analysis of the P.,,,,,. values

The probabilities of crossover, P, for the proposed
crossover operator, and for the PMX, OX, and CX
operators are then fixed at 0.6, 0.8, 1.0, and 0.9,
respectively. When joined with their respective values
of R fixed at 4%, 5%, 6%, and 2%, the effect of
changing Py,.. on the solution quality is studied.
Experiments (33-39) are conducted in such a way
that each experiment is run 10 times with the genetic
parameters P =100 and G =20. Table 11 lists the
results of the experiment, and again the proposed
crossover operator outperforms the PMX, OX, and
CX operators. Although it seems that the PMX
operator has a greater number of successful runs at
probability 0.000, the best value of the probability of

—&— Proposed crossover
—x—PMX
—t—O0X

—0—CX

4500.00 t t t
0 5 10 15

Figure 5 Results of the best-of-generation total cost.
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mutation should be 0.001, since its corresponding
average value ($4979.3) is less than that obtained at
probability 0.000 ($4983.9). The best values of the
probability of mutation for the proposed crossover
operator, PMX, OX, and CX are 0.001, 0.001, 0.001,
and 0.030, respectively. The proposed crossover and
the CX operators can also locate the global optimal
solution in all the experiments. Indeed, the CX
operator works surprisingly well with the different

values of Py The CX operator is shown to outper-
form even the PMX operator, if its parameter
settings are tuned carefully. However, this also
becomes the CX operator’s drawback, because this
implies that its performance is sensitive to the param-
eter settings.

Cost performance of the various crossover operators in
a search process

Table 13 Part list and production data

P1 P2 P3 P4 P5
Production routing 22-1-13-21 3-20-24 14-7-23-24 15-6-18-8-12 15-6-18-8-12-5
Unit op. proc. time* 2-3-4-1 1-1-2 4-4-3-4 1-3-3-2-4 1-1-3-3-2-3
Production volume 130 150 125 145 65

P6 P7 P8 P9 P10
Production routing 9-17-10 9-17-10 4-16 22-1-13-21 2-11-19-5-21
Unit op. proc. time* 2-2-1 2-1-1 1-1 4-2-4-4 2-3-3-3-1
Production volume 78 95 160 85 105

P11 P12 P13 P14 P15
Production routing 3-20 3-20 2-11-19 2-11-19-5 3-20
Unit op. proc. time* 1-3 1-1 1-1-2 3-4-3-4 3-3
Production volume 130 140 150 185 78

P16 P17 P18 P19 P20
Production routing 22-1-13-21 1-13-22 15-6-18-8-12 4-16 10-17-12
Unit op. proc. time* 1-3-2-2 2-2-3 2-1-4-3-2 1-4 2-3-4
Production volume 95 160 85 105 130

P21 P22 P23 P24 P25
Production routing 4-16 2-5-11-19 3 20-12 7-14-23
Unit op. proc. time* 3-4 3-3-2-3 2 24 4-1-2
Production volume 105 130 140 150 185

P26 P27 P28 P29 P30
Production routing 15-6-18-8-10 15-6-18-8-12 4 9-17 6-18-8-12
Unit op. proc. time* 4-2-2-2-1 3-3-3-2-3 2 31 2-4-2-1
Production volume 145 65 78 95 160

P31 P32 P33 P34 P35
Production routing 3-20-17 14-7-23-24-16 22-1-13-21-2 3-20 11-19-5
Unit op. proc. time* 2-4-2 4-4-4-2-2 2-3-4-2-4 1-4 1-3-2
Production volume 85 105 130 150 125

P36 P37 P38 P39 P40
Production routing 20-12-21 16-11-14 4-16 4-16 1-13-19
Unit op. proc. time* 4-2-2 3-1-4 1-1 1-2 1-2-4
Production volume 145 65 78 95 160

*It is assumed that the unit operation processing time for each operation is the same in the first study. The figures listed here are used in

the second study only.

Table 14 Results of solving the facility layout problem

Crossover operator Best (30 runs)

Avg. (30 runs)

Worst (30 runs) Successful hits

The proposed crossover 12982 15087.7 18657 11
PMX 14947 18355.9 20654 0
(0).¢ 22406 24301.7 26926 0
CX 14717 17216.5 20654 0

The total material handling cost of the best solution obtained among all the runs is $12982. Successful hits: the number of runs that have hit

the best solution obtained.
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The general cost performance of the various cross-
over operators in a search process is studied with the
respective optimal values of the genetic parameters
shown in Table 12, and the results are presented in
Figures 4 and 5. In Figure 4, the generation-average
total cost is plotted against the generation number,
whereas Figure 5 shows the behaviour of the corre-
sponding best-of-generation total cost. Both the total
costs converge very rapidly in just a few generations
for the OX and CX operators. Indeed, these two
operators have resulted in a fairly smooth cost
performance. In particular, there are no sudden
changes in the best-of-generation total cost when the
search processes start to converge. However, it is
important to note that such an early premature
convergence may lead to a local optimal solution.
The cost performance of the PMX operator, on the
other hand, is less smooth. Some sudden changes in
the best-of-generation total cost are detected as the
generation advances. These changes, however,
provide a means to enable the total cost to escape
from being trapped in a local optimum, and to
progress to become the global optimal solution
eventually. However, the search process is time-
consuming, in this case, because its convergence is

the slowest. Figures 4 and 5 show that the total costs
still have not reached their corresponding steady state
after 40 generations. In fact, this operator is expected
to perform better if the search process is allowed to
continue with more generations. The proposed cross-
over operator exhibits similar behaviour in the cost
performance as the PMX operator. Figures 4 and 5
reveal that the changes in the total costs begin to
diminish after 30 generations. According to Figure 5,
the best-of-generation total cost converges rapidly in
the beginning of the search, and the global optimal
solution has already been located at as early as the
11th generation. Among all the crossover operators,
the proposed crossover operator is the only one that
can successfully locate the global optimal solution.
The proposed operator is therefore proved to be
effective and efficient in solving facility layout
problems.

The results of the preliminary study show that the
proposed crossover operator outperforms the PMX,
OX, and CX operators in solving facility layout
problems. In addition, the results of the study listed
in Table 12 also suggest the appropriate values of the
genetic parameters for the proposed crossover, and
also the PMX, OX, and CX operators.

16 9 3 21 5 2

17 12 7 19 21

15 24 20 17 19 11

10 8 14 11 2

6 18 8 25 12 14

18 6 15

* 27 10 29 23 7

(a) No constraint imposed (total material
handling cost = $12982).

(b) Under the FCFS policy (total material
handling cost = $15545).

4 16 14 1 2 28

27 18 6 21 13 2

24 23 7 19 5 25

25 8 12 23 19 11

3 20 12 21 8 27

9 10 17 14 5 28

29 17 22 10 18 6

* 24 20 7 3 29

* 9 1 3 26 15

(c) Under the SPTF policy (total material
handling cost = $15709)

(d) Under the LPTF policy (total material
handling cost = $14946)

Figure 6 The best facility layouts obtained under different machine loading policies for the Kazerooni et al. * example.
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Example from Kazerooni et al. (1996)

The proposed approach is again applied to solve
another facility layout problem excerpted from
Kazerooni et al.®. If the proposed approach is testi-
fied to be sturdy, the values of the genetic parameters
obtained in the previous study can still provide good
results in solving this facility layout problem. In this
paper, the best routing configuration determined by
Kazerooni et al.” is used as an input for the proposed
approach. Since the unit operation processing time
and the effective capacities of machines are not
provided in Kazerooni et al.”’, it is assumed that the
unit operation processing time for each operation is
the same, and there is no capacity constraint for the
machines. In addition, the material handling costs are
also assumed to be the same among machines.
Table 13 presents the part list and the corresponding
production data of the parts. Since the problem

Table 15 Effective capacities of the different types of machines

Machine types Effective capacities

1 1800
2 2000
3 1800
4 1400
5 2000
6 1400
7 1400
8 1600
9 1000
10 1000
11 1800
12 2000
13 1800
14 1800
15 1400
16 1800
17 1200
18 1400
19 1800
20 2000
21 1800
22 1800
23 1400
24 1200

needs to locate 24 types of machines (m =1,2,...,24)
in a 5 by 6 machinery location grid, there are
2.65x 10 (30!) possible solutions in the solution
space. The determination of the global optimal
solution by using the exhaustive search method is
impossible in this case. Hence, the proposed
approach is applied to solve the problem with the
genetic’ parameters P =200, G=40, R=4%,
Peoo = 0.6, and Py = 0.001. Since there is no
capacity constraint for the machines, the total
material handling cost is, therefore, not affected by
the machine loading policy. For the sake of
comparison, the three widely used crossover opera-
tors, namely, the PMX, OX, and CX operators, are
also applied to solve the problem with the respective
optimal values of the genetic parameters shown in
Table 12. Thirty runs of genetic search are conducted
for each crossover operator, and the results are
shown in Table 14.

Table 14 shows that the proposed crossover
operator again outperforms all the three crossover
operators. As a matter of fact, the results show that
during the 30 runs, the PMX, OX and CX operators
cannot even hit the best solution obtained from the
proposed approach. By using the optimal values of
the genetic parameters, the CX operator once again
obtains a better solution than those obtained by the
PMX and OX operators. Among the 30 runs, the
proposed crossover operator is observed to be able to
hit the best solution obtained 11 times successfully.
This result is reasonable, because the proposed cross-
over operator is believed to be less sensitive to the
values of genetic parameters when compared to the
other three crossover operators. In this connection,
the proposed crossover operator can still have a good
chance to locate a good solution, even though the
values of the genetic parameters are not specifically
tuned for this problem. The best facility layout
obtained by using the proposed crossover operator is
presented in Figure 6(a).

The problem is now re-visited when there are
capacity constraints for the machines. In this case, the

Table 16 Results of solving the facility layout problem with imposed constraints under various machine loading policies

Crossover operator Best (30 runs)

Avg, (30 runs)

Worst (30 runs) Successful hits

FCFS

The proposed crossover 15545 16350.3 18432 13
PMX 16607 19763.4 24037 0
OoX 23807 25165.1 26337 0
(0),4 15638 18136.9 19642 0
SPTF

The proposed crossover 15709 167579 18762 12
PMX 17092 20621.4 26337 0
(0):4 23285 24807.4 26711 0
(0,4 16661 18789.3 21624 0
LPTF

The proposed crossover 14946 15799.3 17603 16
PMX 15283 17269.9 19622 0
OoX 24758 26130.5 27249 0
X 15286 17839.4 19762 0

The total material handling costs of the best solutions obtained under the machine loading policies of FCFS, SPTF and LPTF are $15545,
$15709 and $14946, respectively. Successful hits: the number of runs that have hit the best solution obtained.
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Table 17 The production plan of the best solution obtained under the machine loading policy of LPTF

Production routing Production volume

Production routing Production volume

P1 22-1-13-21 130
P2 3-20-24 150
P3 14-7-23-24 125
P4 15-6-18-8-12 145
P5 15-6-27-8-25-5 65
P6 9-17-10 78
P7 9-17-10 95
P8 4-16 160
P9 22-1-26-21 85
P10 2-11-28-5-21 105
P11 3-20 123

3-29 7
P12 3-29 140
P13 2-11-19 150
P14 2-11-19-5 185
P15 3-29 78
P16 22-1-13-21 60

22-1-26-21 35
P17 1-13-22 160
P18 15-6-18-8-25 8

15-6-27-8-25 77
P19 4-16 105
P20 2-5-11-19 92

2-5-11-28 38

P21 4-16 105
P22 2-5-11-19 101

2-5-11-28 29
P23 3 140
P24 20-12 150
P25 7-14-23 185
P26 15-6-18-8-10 145
P27 15-6-27-8-25 65
P28 4 78
P29 9-17 95
P30 6-18-8-12 160
P31 3-29-17 85
P32 14-7-23-24-16 105
P33 22-1-13-21-2 130
P34 3-20 150
P35 11-28-5 125
P36 20-12-21 145
P37 16-11-14 65
P38 4-16 78
P39 4-16 95
P40 1-131-19 160

Machines m = 12,25 belong to the machine of type 12, machines m = 13,26 belong to the machine of type 13, machines m = 18,27 belong to
the machine of type 18, machines m = 19,28 belong to the machine of type 19, and machines m = 20,29 belong to the machine of type 20.

unit operation processing time for each operation is
generated by using random numbers as shown in
Table 13. In addition, the effective capacities of the
different types of machines are shown in Table 15.
Figure 6(b-d) illustrate the plant configuration layout,
where the symbol “*’ represents a restricted area.
Moreover, the location on the upper left corner is a
reserved machinery location, where only type 4
machine is allowed to be located. By using eqn (1),
the number of each type of machines is calculated as
0,.=1 (m=1,2,...,24) except Qu=0,3=0;3=
Qs = O = 2. Hence, a total number of 29 (M= 32,
0,) machines are required in the system. It is also
assumed that the machines listed in each of the
following brackets belong to the same machine type:
(12, 25), (13, 26), (18, 27), (19, 28), and (20, 29).
Three machine loading policies, namely, the First-
Come-First-Serve (FCFS), the Shortest Processing
Time First (SPTF), and the Longest Processing Time
First (LPTF), are used to derive the optimal facility
layout. The effects of these machine loading polices
on the total material cost are also studied. Similarly,
30 runs of genetic search are conducted for each of
the four crossover operators (i.e. the proposed cross-
over, PMX, OX and CX operators) for each machine
loading policy, and the results are shown in 7able 16.
It can be noted that the proposed crossover operator
outperforms the other crossover operators in all
cases. The best facility layouts obtained under
different machine loading policies are illustrated in
Figure 6(b-d). In addition, Table 16 also reveals that
the best facility layout obtained under the LPTF
policy incurs the lowest total material handling cost.
Table 17 presents the corresponding production plan.
Table 16 also shows that the proposed crossover
operator is very promising in solving the facility

layout problem. The number of successful hits on the
best solutions obtained under the FCFS, SPTF and
LPTF policies are 13, 12, and 16, respectively.
Furthermore, both the average and the worst
solutions are very close to the best solution obtained
under each machine loading policy. The computation
time required to solve the problem genetically over
40 generations is about 3.5 min on a Pentium-200
based PC. The effectiveness and efficiency of the
proposed crossover operator is again reinforced.

Conclusion

This paper has presented the use of genetic
algorithms as a general methodology to solve facility
layout problems. A mathematical model has been
developed to examine the machines’ layout and the
pattern of material flow for the typical job shop and
flow shop manufacturing environments, and analysis
has been presented to consider various practical
aspects, such as the constraints of restricted areas and
reserved machinery locations, and also the irregu-
larity of the shapes of manufacturing plants, etc. A
genetic approach has been proposed to derive the
optimal machine layout which minimizes the total
material handling cost. A new crossover operator has
been introduced, and its effectiveness has been
studied by using the benchmark problem excerpted
from Chan and Tansri”. The cost performance of the
proposed crossover operator has been compared with
those of the partially mapped crossover (PMX), the
order crossover (OX), and the cycle crossover (CX)
operators. The results have shown that the proposed
crossover operator is the best operator, scoring
superior results to those obtained by the PMX, CX
and OX operators. The same genetic approach has
also been used to solve another facility layout



A genetic algorithm for facility layout problems: K.L. Mak et al.

127

problem excerpted from Kazerooni et al* with a
much larger problem size. The results obtained by
using the proposed crossover, PMX, OX and CX
operators under three different machine loading
policies have been compared. The results of the
comparison have shown that the proposed approach
is robust, and its success rate of hitting the best
solution obtained is high. Indeed, the proposed
approach provides a very effective means to solve
facility layout problems.
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