
Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79

ARTICLE IN PRESS
*Correspondi

997-744.

E-mail addre

0736-5845/$ - see

doi:10.1016/j.rci
Optimal robot task scheduling based on genetic algorithms

P.Th. Zacharia, N.A. Aspragathos*

Mechanical Engineering and Aeronautics Department, University of Patras, 26500 Patras, Greece

Received 10 April 2003; received in revised form 10 January 2004; accepted 25 April 2004
Abstract

Industrial robots should perform complex tasks in the minimum possible cycle time in order to obtain high productivity. The

problem of determining the optimum route of a manipulator’s end effector visiting a number of task points is similar but not

identical to the well-known travelling salesman problem (TSP). Adapting TSP to Robotics, the measure to be optimized is the time

instead of the distance. In addition, the travel time between any two points is significantly affected by the choice of the manipulator’s

configuration. Therefore, the multiple solutions of the inverse kinematics problem should be taken into consideration.

In this paper, a method is introduced to determine the optimum sequence of task points visited by the tip of the end effector of an

articulated robot and it can be applied to any non-redundant manipulator. This method is based on genetic algorithms and an

innovative encoding is introduced to take into account the multiple solutions of the inverse kinematic problem. The results show

that the method can determine the optimum sequence of a considerable number of task points for robots up to six-degrees of

freedom.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Robots; Travelling salesman problem; Genetic algorithms
1. Introduction

Current manipulators should be capable of perform-
ing complex tasks in minimum time in order to increase
the productivity. Thus, one of the objectives of the
robotics research community is to develop algorithms
that enable the manipulators to perform the desired
tasks as quickly as possible, taking into account the
limits imposed by their physical characteristics. The
robot application considered in this work is composed
of movements between points where the order of visit is
not critical. Some examples of such applications are the
insertion of electronic components, the laser cutting, the
multiple drilling and the spot welding.
In many industrial operations, the order with which

the manipulator will ‘visit’ a number of task points and
return to the starting point is not predetermined. On the
other hand, that order strongly affect the total cycle time
required to visit the task points. Determining the
ng author. Tel.: +30-2610-997-268; fax: +30-2610-

ss: asprag@mech.upatras.gr (N.A. Aspragathos).

front matter r 2004 Elsevier Ltd. All rights reserved.

m.2004.04.003
optimum sequence means searching for the order that
minimizes the execution time of the pre-assigned tasks.
The problem of determining the optimum sequence of

manipulator’s task points can be considered as an
extension to the well-known travelling salesman pro-
blem (TSP) [1]. The TSP is one of the most widely
discussed problems in combinatorial optimization. The
salesman has to visit exactly once each one of a finite
number of cities and return to the starting city.
Given the distances between the cities, the objective of
the optimization is to find the optimum total tour the
salesman should follow. Adapting TSP to robotics,
the measure to be minimized is the time instead of the
distance. In other words, it is asked to determine
the path which ensures that the robot pass through the
given points following the order with the minimum
possible cycle time. It should be stressed that the
problem of finding the minimum cycle time takes into
consideration the multiple solutions of the inverse
kinematics problem. This implies that the choice of the
manipulator’s configuration significantly affects the
global cycle time. So, this problem is more difficult
and of higher complexity than the classic TSP problem.



ARTICLE IN PRESS
P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7968
Several optimization techniques have been proposed
to determine the minimum cycle time of a manipulator
visiting a number of task points. The most prominent of
these techniques are presented and discussed in the
following.
Dubowsky and Blubaugh [2] used Little’s algorithm

to determine the minimum time to accomplish a
manipulator task. The authors solved the TSP by
distinguishing three cases. They solved the TSP where
the task points may be visited in any order and tested
their algorithm using a PUMA 260 manipulator, which
has to ‘visit’ six points. In the second case, they solved
the TSP, where some points may be visited in any
sequence, whereas some others must be visited in an
exact sequence. Lastly, they investigated tasks, which
are not in the usual TSP form, including tasks where the
manipulator has to change its tools during an operation.
In all these TSP problems, the computation time
required was quite reasonable, but there is no reference
to the multiple solutions of the inverse kinematics
problem.
Abdel-Malek and Li [3] developed a method for

finding the optimum sequencing of the robotic task
performance. The time is the performance measure and
the minimum cycle time is determined taking into
consideration the multiplicity of robot configurations.
The algorithm is tested for three-degrees-of-freedom (3-
DOF) robots (cartesian, cylindrical, spherical and
articulated) having at maximum two different config-
urations for each point, which have to visit six points in
the three-dimensional space. However, this algorithm
was not extended for robots with more than two
configurations and there is not any indication that can
be extended by further elaboration.
The nearest neighbor (NN) algorithm is an algorithm

that reduces the computational time and converges even
for a large number of points. Edan et al. [4] applied the
NN algorithm for fruit-harvesting robots in order to
find the near-optimum-time path between the fruit
locations. Shin and Mckay [5] have shown that the
total time tc to pass along the path between two points is
proportional to the geodesic distance S. So, the cost
function was defined as the distance along the geodesic
in the inertia space, since calculating the geodesic
distance in this space is equivalent to calculating time.
The algorithm was implemented for a cylindrical robot
with 4-DOF, which has to collect fruits from 20 trees in
the three-dimensional space. The maximum number of
fruits, for which the manipulator was tested, was 250
and the authors claimed that the computing time is
acceptable for real-time applications. Furthermore, the
suggested algorithm takes into account the kinematic
and dynamic properties of the robot when determining
the path of the robot through the task points. However,
it is not mentioned whether the possible configurations
are taken into account during the search for the
optimum path. In conclusion, a fast algorithm is derived
with a time complexity of only O(N2), where N is the
number of the fruit points, but this method does not
always result in the shortest tour. This means that the
NN algorithm does not guarantee that the optimum
solution will be found.
Simulated annealing (SA) is a technique derived from

statistical mechanics and it is motivated by an analogy
to the behavior of the physical annealing process.
Dissanayake and Gal [6] used SA for determining a
near-optimum sequence of travel for redundant manip-
ulators. Because of the non-linearity of the optimization
problem, the method of sequential quadratic program-
ming is used to find robot’s optimum configurations and
the optimum location in the workcell for a given
sequence of tasks. SA was applied for 3-DOF planar
robots (3R, RPR and PRR), which have to pick up a
tool, then travel through nine locations in the two-
dimensional space and finally return the tool to its
original position. The algorithm searched about 18 000
sequences for the nine work-site problem till conver-
gence was obtained. However, it is estimated that for the
19 work-site problem, the algorithm should search
about 45 000 sequences. So, a really powerful computer
is required in order to obtain a solution within a
reasonable time. Nevertheless, SA is a robust technique
that performs well-solving complex problems and does
not need much computational time when the number of
the task points is less than 10.
Petiot et al. [7] used the elastic net method (ENM) in

order to minimize the cycle time of robotic tasks. The
method is well adapted to the problem of finding the
optimum sequence of a manipulator’s end effector
moving from point to point. This is achieved by
minimizing an energy function E using a modified
gradient method. However, the algorithm may not
converge due to wrong choice of the algorithmic
parameters and this happened in 5% of the tests. The
tests were run on a VAX 4500 computer. In the same
paper, there is a comparison of the results between
ENM and the Little’s branch and bound algorithm
proposed by Dubowski and Blubaugh [8]. As far as
CPU time is concerned, the ENM is faster than Little’s
method. Nevertheless, the authors admitted that the
ENM works well in the case of 2- or 3-DOF robots but
it is very difficult to be used in the case of robots with
more than three degrees of freedom because of the
increased computer time cost.
The algorithms mentioned in the previous paragraphs

work well for 2- or 3-DOF manipulators, but they have
difficulties and increase the time cost or cannot be
generalized in the case of manipulators with more
degrees of freedom. Some of these algorithms take into
consideration the multiple solutions of the inverse
kinematics problem. In all the examples presented in
the discussed papers, each point in the two-dimensional



ARTICLE IN PRESS
P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 69
space can be reached with two configurations. In
addition, these algorithms do not require too much
time to find the optimum solution for a number of
points up to 10; however, the time cost is significantly
increased for more than 10 points.
During the last two decades several approaches have

been proposed for the solution of the TSP and in some
cases were modified to determine the minimum cycle
time of a manipulator. The approach introduced in this
paper is based on the very promising and rapidly
developing genetic algorithms (GAs) in order to find the
optimum sequence of a manipulator’s end effector
moving between the task points. Despite the fact that
several researchers [9–11] have dealt with the TSP using
GAs, they have not taken into consideration robots and
their multiple configurations.
The main advantage of the GAs over the gradient-

optimization methods is that they do not require the
derivative of the objective function. So, they are able to
find the near global optimum of non-continuous and
procedural functions. In addition, GAs can be easily
understood with very few mathematics.
Rekleitis and Aspragathos [12] found the optimum

sequence using GAs, where the objective function was
the travel time. The genotype of the GA was an array of
integer numbers that demonstrates a potential solution
to the problem. The proposed method computes all the
combinations of the possible configurations resulting
from the inverse kinematics problem with which the
robot’s end effector can reach the N points and finally
selects the one that gives the minimum travel time. In
their approach, they take into consideration the time
required to move the joints from the configuration with
which the robot reaches a task point to the configuration
with which it leaves this point. The GA is implemented
for the case of a PUMA-like robot with four different
configurations and results were found for seven and 14
points in the three-dimensional space. The results show
that the GA is a reliable procedure, despite the fact that
it is relatively slow. However, this is not a serious
drawback, since the robot scheduling is an off-line
procedure.
This paper introduces a method based on GAs for the

determination of the optimal sequence of a non-
redundant manipulator’s end effector, i.e. the sequence
that guarantees the minimum cycle time, taking into
consideration its multiple configurations. In our ap-
proach, each chromosome of the population is formed
in such a way that the first part represents the sequence
with which the manipulator reaches the N task points
and the second part represents the manipulator’s
configurations derived by the solution of the inverse
kinematics in each task point. The integer alphabet is
used for the first part, whereas for the second part
the binary and the integer alphabet is used. The
proposed algorithm is general and can be applied to
any non-redundant manipulator without regard to its
complexity, taking into account the multiple solutions of
the inverse kinematics problem.
The remainder of the paper is organized as follows.

Section 2 defines the objective function that has to be
minimized. Section 3 briefly describes the basic structure
of GAs. In this paragraph, the proposed encoding
mechanism is presented in detail. Section 4 presents the
results and analyses the efficiency of the proposed GA
and the paper concludes with Section 5.
2. Formulation of the objective function

The relation between the vector s, denoting the
position and orientation of the end effector, and the
joint displacement vector q is generally non-linear. This
kinematic relation of the manipulator is given by

s ¼ f ðqÞ: ð1Þ

When the joint displacements represented by the vector
q are given, the corresponding s is determined uniquely
and the calculation is rather simple. When a task is
assigned to the manipulator, its end-effector position
and orientation s or a trajectory s(t) is given, then the
solution of Eq. (1) can be written formally as

q ¼ f �1ðsÞ: ð2Þ

However, a solution q does not necessarily exist and
even when it does exist, it is not usually unique. The
problem of obtaining q corresponding to a given s is
called the inverse kinematics problem.
The structural characteristics of the robot (the

anatomy, the type of the joints, the length of its links,
the joint velocity, etc.) affect significantly the time spent
on travelling between any two particular task points.
Inverse kinematics can be used to compute the travel
time between two points.
This paper deals with the following problem: Let a

manipulator, which has to visit N points (exactly once
each one) and return to the initial point. It is asked to
determine the tour the manipulator has to travel, so that
the total cycle time is minimized.
At this point, it should be mentioned that in the case

of non-redundant robots, one point of the operational
space can be reached with a finite number of configura-
tions. This means that in the case of multiple config-
urations, the optimum sequence is certainly affected by
the configuration choice. So, given the joint displace-
ments for each configuration, it is easy to compute the
time needed for travelling between any two points. The
total time needed for the completion of a tour
constitutes the objective function to be optimized. In
the following paragraphs, the formulation of this
function is described in detail.



ARTICLE IN PRESS

Fig. 1. A schematic of a n-DOF manipulator, the N task points and the r configurations corresponding to every task point.

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7970
Let an n-DOF manipulator operating in the m-
dimensional space (npm) that has to visit N task points,
the locations of which are known and r is the number of
solutions of the inverse kinematics problem. Fig. 1
shows an n-DOF manipulator, which has to visit N task
points in the m-dimensional space. A set of r configura-
tions (expressing the r solutions of the inverse kine-
matics problem) corresponds at each one of the N task
points. The objective is to find the tour for visiting all
the task points (once each one), so that the minimum
travel time is determined, taking into account the
multiplicity of the robot configurations corresponding
to every task point.
First of all, the joint coordinates ðqARnÞ are

computed solving the inverse kinematics problem for
each point of the m-dimensional space. Therefore, the
time ti spent by the manipulator to travel from the task
point (i � 1) using the qc set of the joint coordinates,
which determines the c-configuration, to the task point i

using the qk set of the joint coordinates, which
determines the k-configuration, can be written as

ti ¼ max
jqk

ji � qc
jði�1Þj

’qj

 !
;

j ¼ 1; 2;y; n

k; c ¼ 1; 2;y; r
ð3Þ

where qji is the jth joint displacement for the ith end-
effector location and ’qj is the average velocity of the
joint j. Eq. (3) denotes the fact that the travel time
between two positions is determined by the slowest
manipulator’s joint. It is also clear that for the case of
multiple solutions, the choice of the manipulator’s
configuration affects significantly the travel time. So,
the total travel time tc required to visit all the task points
is given by

tc ¼
XN

i¼2

ti ð4Þ
and the optimization problem can be written as

topt ¼ min
XN

i¼2

ti: ð5Þ

The optimization variables of this function are the
robot configurations corresponding to each task point.
The optimum value of the function, expressed by
Eq. (5), represents the minimum travel time between N

points. The search space of this function is discrete,
because the number of all the task points the robot has
to visit is finite. It is clear that the function is non-
continuous, non-linear and procedural.
At this point, we should notice that the problem is

defined in the configuration space in this method, so the
complexity of the problem increases, since it depends on
the number of the task points and the number of the
possible manipulator’s configurations. Tsai and Morgan
[13] proved that the inverse kinematics problem of a six-
revolute joint manipulator has at most 28 (=256)
solutions. In the special case where the last three axes
intersect, the possible configurations are proved to be 24

(=16). Craig [14] based on this paper marked that the
maximum number of solutions is related to how many
of the link length parameters are zero. So, in this case
the maximum number of solutions is expressed as 2d,
where d ¼ 1; 2; 3; 4: The number of all the possible tours
is ðN � 1Þ!=2 where N is the number of the points. The
number of all the possible configurations with which the
manipulator can reach the N points is ð2dÞN for each
tour, where 2d are the solutions of the inverse kinematics
problem. Consequently, the range Rs of the search
space is

RsðN; dÞ ¼
ðN � 1Þ!
2

ð2d ÞN : ð6Þ

For example, for a 2-DOF manipulator operating in
the two-dimensional space that has to visit 10 points
with two different configurations corresponding to each



ARTICLE IN PRESS

Fig. 2. The search space population versus the number of points for 2,

4, 8, 16 configurations.

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 71
point, the population of the search space is Rsð10; 1Þ ¼
1:85� 108: For the case of a 6-DOF manipulator
operating in the three-dimensional space that has to
visit 10 points with eight different configurations
corresponding to each point, the population of the
search space is Rsð10; 3Þ ¼ 1:94� 1014: It is clear that the
number of the possible solutions depends at a great
extent on the number of the possible configurations.
Fig. 2 represents the population of the search space
versus the number of the task points, for the cases where
the manipulator has to visit a point in the space with 2,
4, 8 and 16 possible configurations.
3. Optimization based on GAs

GAs are adaptive search techniques based on the
principles and mechanisms of natural selection and the
‘survival of the fittest’. GAs grew out of Holland’s study
of adaption in artificial and natural systems. The GA
works in parallel a certain number of chromosomes and
each of them is made of a finite string of symbols (genes)
and represents a possible solution for a given objective
function. The set of chromosomes, which is changed at
each iteration (generation), is called population, and the
members of a population are called individuals.
The GA, like any other optimization algorithm,

begins with the determination of the fitness function
and the control parameters. It stops, like any other
optimization algorithm, checking for convergence. The
components of the GA are outlined below.

3.1. The representation mechanism

The representation mechanism is the main innovation
of the proposed approach, so it is described in detail.
The first step in applying the GA is the choice of
an appropriate representation to encode the possible
solutions of the current optimization problem. The
solution is represented as a string over a specific
alphabet.
The bit string representation of solutions has domi-

nated GA research, since the binary alphabet offers the
maximum number of schemata per bit of information of
any encoding [15]. Holland [16] gave a theoretical
justification for using binary encoding. He compared
the number of schemata available in a binary coding to
the number of schemata available in a non-binary
coding, where the two encodings had the same
information-carrying capacity. Holland’s schema-count-
ing argument seems to imply that GAs exhibit worse
performance on multiple-character encodings than on
binary encodings. However, several tests showed that
non-binary encodings perform better than the binary
encodings [17].
Consequently, the performance depends very much

on the problem, because binary encodings are unnatural
and unwieldy for many problems and are prone to
rather arbitrary orderings. Nevertheless, there are no
rigorous guidelines for predicting which encoding will
work best.
As far as the TSP is concerned, the binary representa-

tion of tours is not well suited, since the binary code of
the cities will not provide any advantage. On the
contrary, the binary representation would require
special repair algorithms, since a change of a single bit
may result in an illegal tour [18].
In the proposed GA, each chromosome consists of

two parts. The first part represents the order of the task
points, whereas the second part includes the robot
configuration corresponding to each task point.
For the case of a 2-DOF manipulator that has to visit

N points in the two-dimensional space with two
different configurations corresponding to each point,
each chromosome consists of 2N genes. The first part of
the string composed of N symbols, represents the
sequence with which the manipulator reaches the N

task points. For this part, the integer alphabet is used.
The second part of the string composed of N symbols,
represents the manipulator’s configuration. For the
second part, the binary alphabet is used. So, given the
lengths of the links L1 and L2 and the position
coordinates x, y of the N task points, the solution of
the inverse kinematics problem for the joint variables q1
and q2 are [14]:

q1 ¼ tan
�1ðy=xÞ7cos�1

x2 þ y2 þ L21 � L22

2L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
 !

and

q2 ¼ cos
�1 x2 þ y2 � L21 � L22

2L1L2

� �
: ð7Þ



ARTICLE IN PRESS

Fig. 3. Two different configurations of a 2-DOF manipulator

operating in the two-dimensional space.

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7972
The 7 symbol implies that there are two different
solutions for the joint variable q1 resulting in two
different configurations. So, the first configuration
(continuous line in Fig. 3) has the solution (q1�, q2),
whereas the second configuration (dashed line in Fig. 3)
has the solution (q1+, q2). In other words, the value of
the binary digit corresponding to the task point in the
two-dimensional space determines one out of the two
configurations of the manipulator. In particular, the
configuration (q1�, q2) corresponds to the binary digit 0,
whereas the configuration (q1+, q2) corresponds to the
binary digit 1.
Let a 2-DOF manipulator that has to visit 9 points in

the two-dimensional space, then the chromosome can be
formed as

which means that the manipulator reaches task point 5
with the configuration corresponding to the binary digit
0, then it reaches point 9 with the configuration
corresponding to the binary digit 1, etc.
Let a 6-DOF manipulator that has to visit N task

points in the three-dimensional space with eight
different configurations corresponding to each task
point. The first part of the string composed of N

symbols, represents the sequence with which the
manipulator reaches the N points. For this part, the
integer alphabet is used. The second part of the string
composed N bytes of 3 bits, represents the manipulator’s
configuration.
In other words, each byte of (000, 001, 010,y, 111)

corresponding to a task point in the three-dimensional
space, determines one out of eight configurations of the
manipulator, in a similar way with the one presented for
the case of the 2-DOF manipulator. Let a manipulator
that has to visit 9 points in the three-dimensional space,
the chromosome can be formed as

which means that the manipulator reaches point 7 with
the configuration corresponding to the byte 010, then it
reaches point 2 with the configuration corresponding to
the byte 001, etc.
In general, for a manipulator that has to visit N points

in the m-dimensional space, reaching each task point
with 2d different configurations, the chromosome is
formed as follows:

where the arrows show the correspondence of one
configuration to the respective task point.
For the second part, an integer encoding is used for

comparison. For this case, the chromosome is formed as
follows:

where pu is an integer number varying between 1 and 2
d

and corresponds to a specific configuration.
At this point, it should be made discrimination

between the integer encoding used to represent the
TSP and the integer encoding used for the robot’s
configurations. The integers corresponding to the task
points that the robot has to ‘visit’ cannot be repeated,
since the robot has to reach each task point exactly once.
On the other hand, the robot can reach the task points
with any configuration, so the integers corresponding to
the robot’s configurations can be repeated. This implies
that the genetic operators (crossover and mutation)
applied to the two parts of the chromosome cannot be
the same.
Despite the fact that the binary encoding seems to be

more complex than the integer encoding, it performs
much better. This is practically confirmed by the results
from the experiments shown in Tables 3 and 4. In
addition, the code for the binary encoding is simpler,
because it is not necessary to correspond a binary
number with a robot’s configuration (q1, q2,y), as it is
explained above in this paragraph.



ARTICLE IN PRESS
P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 73
3.2. Initial population

Usually, the initial population is randomly selected in
order to uniformly distribute the selected chromosomes
(solutions over the search space). In some cases,
solutions obtained from another optimization algorithm
are used to seed the initial population [19]. Although
this bears the risk of misguiding the optimization
process toward local optima, it has been proved that
the seeding approach is very powerful in some cases. In
our approach, the initial population is seeded using case
retrieval in order to speed up the GA in finding a
solution [20].

3.3. The evaluation mechanism

The evaluation mechanism uses the objective function
of the current problem, which has to be minimized. This
function is transformed to the fitness function, which is
evaluated for all the chromosomes of the population.
The value of the fitness function for one chromosome is
a reflection of how well this chromosome is adapted to
the environment, i.e. the ability of the chromosome to
survive and be reproduced in the next generation.
In the problem discussed here, the objective function

deals with the time needed by the manipulator to visit N

task points and return to the starting point and the goal
is the minimization of this time. The procedure to obtain
the objective function is described in detail in Section 2.
The fitness function is the inverse of the objective
function

fitness ¼
1

tc
; ð8Þ

where tc is given by Eq. (4). Since tca0; it is not
necessary to take any precaution to avoid infinite values.

3.4. Reproduction

Reproduction is an operator that follows the process
of natural selection and the ‘survival of the fittest’. It is a
simple copy of an individual from one generation to the
next one without any modification. Reproduction has
the purpose of preserving the good traits, carried by the
good individuals of the population, and spreading them
over the population at a higher rate. Consequently,
reproduction does not produce new individuals.
In the proposed GA, the chromosomes are copied

from the previous generation to the next one according
to the normalized (and not the absolute) values of the
fitness function. The proportional selection is based on
the roulette wheel strategy, where the chromosomes that
will be copied are selected with rates proportional to
their fitness. This means that the probability is higher
for a chromosome with high fitness to be selected for
reproduction than another with lower fitness.
3.5. Crossover

Crossover is a recombination operator and follows
the reproduction. The role of this operator is to join
together parts of several individuals in order to produce
new ones for the next generation. The individuals are
randomly selected according to a predefined probability
(crossover rate). The crossover operator used for the
first part of the chromosome, which is consisted of
decimal digits, is the order crossover (OX) [21] and for
the second part of the chromosome, the one-point
crossover is used [18].

3.6. Mutation

Mutation is applied performing a random modifica-
tion on some individuals with a small-predefined
probability (mutation rate). The mutation operator
used for the first part of the chromosome consisted of
decimal digits is the inversion [21]. Inversion is simply
applied to a chromosome and guarantees that the
resulting offspring represents a ‘legal’ tour. For the
second part of the chromosome, the mutation operator
is applied changing a random gene of digital value ‘0’ to
‘1’ and vice versa for the binary encoding, whereas for
the integer encoding a random gene changes to another
value between 1 and 2d.

3.7. Control parameters

A number of control parameters that affect the GA
process and consequently the convergence rate and the
final result has to be defined. The most important
control parameters are the following:
Population size: The population size determines the

number of the chromosomes and therefore how much
genetic material is available during the genetic search. It
has to be mentioned that a small population size covers
a small area of the search space, which means that it
may not be a representative sample of the solutions. So,
a small population size decreases the possibility of
finding a global optimum. On the other hand, a large
population size significantly increases the CPU time.
The population size depends on the nature and the
complexity of the current problem. In this work, the
proposed algorithm was tested for various population
sizes. Finally, the selected population size is equal to 200
for the case of a 3-DOF manipulator and 500 for a 6-
DOF manipulator.
Crossover rate: The crossover rate determines the

frequency with which the crossover operator is applied
to the chromosomes of the population, so that a new
population is generated. The higher the crossover rate is,
more individuals are introduced in the new population.
The crossover rate is usually in the range between 0.6



ARTICLE IN PRESS

Table 1

Near-optimum solutions versus seeding percentages for a 3-DOF

robot

Seeding Near-optimum Generation of the

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7974
and 1.0 and in our case, it is selected equal to 0.8 after a
considerable number of trials.
Mutation rate: The mutation rate determines the

probability that a gene’s value in a chromosome would
be changed. Mutation introduces new areas of the
unexplored search space. However, the mutation rate
should not be too high, because it increases the
randomness in the search. The mutation rate is usually
less than 0.4 and in our case, it was selected equal to 0.1
after too many trial runnings.
Elitism: Elitism is the selection strategy that guaran-

tees the survival of the best chromosome of the
population to the next generation. This is achieved by
comparing the best chromosome of the current genera-
tion with the best one of the previous generation and
preserving the best of the two chromosomes.

3.8. Termination conditions

There is not mathematical proof of convergence or
any guarantee that the GA will find the global optimum.
In addition, it is not clear which is the best way to
terminate the algorithm. In many cases, a maximum
number of iterations (generations) is defined in advance.
However, the predetermination of the maximum num-
ber of generations implies that the duration of the
genetic search is fixed, regardless of the search success.
Moreover, it is difficult to determine beforehand the
number of generations needed to find near-optimum
solutions. Thus, an assessment of the quality level of the
GA should be made on-line.
In our approach, the condition to be satisfied so that

the evolution is aborted is the iteration of the same
solution for a predefined number of generations. So, the
algorithm terminates by defining in advance the number
of iterations (generations) for which the same chromo-
some constantly appears as the optimum one. It should
be mentioned that the best solution appears for several
iterations before a fortuitous crossover or mutation
produces a better solution. For this reason, the
maximum number of iterations should be large enough;
otherwise, a misleading result may arise.
percentage solution (s) near-optimum solution

5 3.14 72

10 3.24 2

15 3.09 196

20 3.01 96

25 2.92 358

30 2.92 38

35 3.06 31

40 3.27 11

45 3.01 155

50 3.20 44

60 3.14 160

70 2.92 35

80 3.08 184

90 3.25 52

100 3.24 12
4. Discussion of results

In this section, the method for optimal robot task
scheduling tested in four sets of simulated experiments.
In paragraph 4.1, the two encodings, namely binary and
integer, for the second part of the chromosome are
tested in order to compare the best cycle times achieved
in each case. In paragraph 4.2, the influence of the
control parameters on the results of the proposed GA
for the case of a 3-DOF and a 6-DOF manipulator is
studied. In paragraph 4.3, the results of the proposed
approach are compared with other methods presented in
the introduction. In all experiments presented in the
following paragraphs, the term ‘near-optimum’ is
adopted for the best solution found, since it cannot be
proved that the solution found was the optimum
solution.

4.1. The encoding of the proposed GA

In this paragraph, the problem is solved using the two
encodings for the second part of the chromosome.
For both encodings, the integer alphabet is used for

the first part of the chromosome. For the second part of
the chromosome, the binary alphabet is used for the first
encoding, whereas for the second encoding the integer
alphabet is used.
The algorithm was tested using these two encodings

for a 3- and a 6-DOF manipulator for the same points
and the same control parameters. The seeding percen-
tages for each case are selected after several runnings of
the GA. Tables 1 and 2 show the near-optimum
solutions and the generation at which each one appears
for the first time for several different percentages. The
results shown in Tables 1 and 2 correspond to the case
of a 3-DOF and a 6-DOF robot that has to reach 10
task points in the three-dimensional space. It is clear
from the results that the seeding percentage influences
the near-optimum solution the algorithm finds and it is
different for each case. So, the best ‘near-optimum’
solution for the case of a 3-DOF robot is found for a
seeding percentage of 70%, whereas for the case of a 6-
DOF robot the seeding percentage is 45%.
The results shown in Tables 3 and 4 confirm that the

binary encoding representing the configurations of the
manipulator is better than the integer encoding for
almost all the cases comparing the cycle time and the



ARTICLE IN PRESS

Table 2

Near-optimum solutions versus seeding percentages for 6-DOF robot

Seeding

percentage

Near-optimum

solution (s)

Generation of the

near-optimum solution

5 5.07 166

10 6.26 2

15 5.87 7

20 6.26 2

25 6.26 2

30 6.26 2

35 6.10 3

40 6.26 2

45 4.82 3

50 4.66 125

60 4.66 241

70 6.26 2

80 6.05 219

90 6.10 3

100 6.10 3

Table 3

Cycle times using binary and integer encoding

3-DOF manipulator

Number

of points

Binary encoding Integer encoding

Cycle time (s) Generation Cycle time (s) Generation

5 2.31 Third 2.35 18th

10 2.92 35th 4.86 48th

15 3.10 First 8.65 212th

20 3.57 14th 9.57 140th

25 4.02 87th 10.62 123th

Table 4

Cycle times using binary and integer encoding

6-DOF manipulator

Number

of points

Binary encoding Integer encoding

Cycle time (s) Generation Cycle time (s) Generation

5 1.72 First 1.72 First

10 4.82 Third 6.36 Third

15 15.11 95th 14.58 265th

20 19.81 91th 19.85 445th

25 24.37 106th 26.02 312th

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 75
generation at which the GA converges. So, the binary
alphabet is used for the second part of the chromosome
for all the tests implemented in paragraphs 4.2 and 4.3.

4.2. The influence of the control parameters

The proposed GA is applied to a 3-DOF manipulator
that has to visit 10 points in the three-dimensional space.
Various combinations of the control parameters are
tested and the maximum number of generations of the
same chromosome is set to 200. Table 5 shows the values
of the control parameters, the resulting near-optimum
solutions and the generation in which the near-optimum
solution appears for the first time for a selected
algorithm runnings out of the considerable number of
experiments carried out in this work.
The combination of the control parameters which

gives the ‘best’ near-optimum solution is: population
size=450, crossover rate=0.9 and mutation rate=0.25
and the minimum cycle time is 2.92 s. This near-
optimum solution appears for the first time in the 35th
generation. The worst cycle time, which is achieved for
the control parameters of the first row, is 3.32 s, which
means that it is

j3:32� 2:92j
2:92

100% ¼ 13:69%

greater than the best one. Fig. 4 shows the best, the
average and the worst values of the total cycle time
during the convergence of the GA, with the above values
of the control parameters.
In the second part of the simulated experiments, the

proposed method is tested for a 6-DOF manipulator
that has to visit 10 points in the three-dimensional space.
A variety of control parameters are tested, whereas the
algorithm terminates after 200 iterations (generations)
of the same chromosome. Selected results are shown in
Table 6.
In this case, the combination of the control para-

meters, which gives the ‘best’ near-optimum solution is:
population size=400, crossover rate=0.8 and mutation
rate=0.1 and the minimum cycle time is 4.82 s. This
near-optimum solution appears for the first time in the
third generation. The worst cycle time is 8.32 s, which is

j8:32� 4:82j
4:82

100% ¼ 72:61%

greater than the best one. Fig. 5 shows the best, the
average and the worst values of the total cycle time
during the convergence of the GA.
Considering the results of these trials, simulated

experiments are assigned to the control parameters:
crossover rate=0.9, mutation rate=0.25 and popula-
tion size=450 for a 3-DOF and crossover rate=0.8,
mutation rate=0.1 and population size=400 for a 6-
DOF manipulator, respectively.
Fig. 6 depicts the optimum sequence of 3-DOF

manipulator’s route visiting 10 points located on the
x–y plane with the above values of the control
parameters, in order to show a simple example of the
optimum sequence found by the introduced method.

4.3. Computational time results

Computational time results of previous approaches
are very limited in the relevant literature. So, it is
difficult to present an extended comparison. In addition,
the computers used in previous works are different from
the computers used in this work. Despite these



ARTICLE IN PRESS

Table 5

Near-optimum solutions versus control parameters

3-DOF

Population size Crossover rate Mutation rate Near-optimum solution (s) Generation of the near-optimum solution

150 0.8 0.10 3.32 Fourth

150 0.9 0.25 3.32 Fourth

250 0.8 0.10 3.01 Third

250 0.9 0.25 3.16 59th

350 0.8 0.10 3.13 13th

350 0.9 0.25 3.29 111th

450 0.8 0.10 3.01 53th

450 0.9 0.25 2.92 35
th

Fig. 4. Convergence of the proposed GA for the case of a 3-DOF manipulator.

Table 6

Near-optimum solutions versus control parameters

6-DOF

Population size Crossover rate Mutation rate Near-optimum solution (s) Generation of the near-optimum solution

200 0.8 0.10 5.48 130th

200 0.9 0.25 8.32 First

300 0.8 0.10 4.82 34th

300 0.9 0.25 7.36 224th

400 0.8 0.10 4.82 Third

400 0.9 0.25 7.59 33th

500 0.8 0.10 6.67 Second

500 0.9 0.25 8.32 First

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7976
difficulties some computational results can give an
indication of the advanced performance of the proposed
approach.
In [7], the elastic net method is applied for a 2-DOF

manipulator (one prismatic joint and one rotational
joint), which has to ‘visit’ 10 points in the two-
dimensional space. This manipulator can reach a point
in the space with two different configurations resulting
from the solution of the inverse kinematics problem.
The CPU time was 20 s and the algorithm run on a VAX
4500 computer, whereas the estimated CPU time using
Little’s method was 1280 s.



ARTICLE IN PRESS

Fig. 5. Convergence of the proposed GA for the case of a 6-DOF manipulator.

Fig. 6. Optimum sequence for 10 points on the x–y plane for a 3-DOF

manipulator.

Fig. 7. Optimum route for 10 points on the x–y plane for a 2-DOF

manipulator.

Fig. 8. CPU time versus the number of task points in the 3-D space for

a 3-DOF manipulator.

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 77
Using the proposed approach, the optimum sequence
of the end-effector’s route visiting ten points in the two-
dimensional space is shown in Fig. 7. The CPU time is
3.91 s and the algorithm run on a Pentium 4 PC at
1.8GHz under Matlab platform.
An interesting indication of the computational time

performance is the variation of the calculation time
versus the number of task points. Figs. 8 and 9 show this
variation which is approximately linear with the
computational time results. The CPU time does not
increase at a great rate versus the number of points. At
this point, it should be stressed that the optimal robot-
scheduling problem is much more complicated than the
classical TSP problem, since the multiple configurations
of the robot are also taken into consideration. The range



ARTICLE IN PRESS

Fig. 9. CPU time versus the number of task points in the 3-D space for

a 6-DOF manipulator.

P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–7978
of the search space is given by Eq. (6) and for the case of
a 6-DOF manipulator that has to visit 10 task points
with eight configurations, the possible solutions are
Rsð10; 3Þ ¼ 1:94� 1014; whereas for 20 task points the
possible solutions explode to Rsð20; 3Þ ¼ 7:01� 1034! So,
despite the fact that the search space increases exponen-
tially with the increase of the task points, the CPU time
increases almost linearly.
Similar results are presented by Ahn et al. [22] for a

GA solving the simple path routing problem, where the
CPU time increases linearly with the number of points.
Using Little’s method and ENM [7], the computational
time increases significantly (almost exponentially) with
the number of task points, despite the fact that the
multiple configurations are not taken into consideration.
5. Conclusions

In this paper, a method based on GAs is introduced to
determine the optimum sequence of a manipulator’s end
effector. This method is based on GAs and the main
innovation is made on the encoding of the GA in order
to take into consideration the multiple solutions of the
inverse kinematics problem for the computation of the
total cycle time. In our approach, the chromosome
consists of two parts. The first part of the string
represents the sequence with which the manipulator
reaches the N task points and the second part represents
the manipulator’s configuration corresponding to each
task point. For the first part the integer alphabet is used,
whereas for the second part the binary alphabet is used.
The pattern with which the multiple solutions of the
inverse kinematics problem are taken into account is
general and can be easily applied to any non-redundant
manipulator.
Concerning the structure of the GA, the choice of the

control parameters has a great influence on the solution
of the problem that is optimized. Some combinations of
the control parameters are tried and the combination
that gives the ‘best’ near-optimum solution is finally
selected.
In conclusion, our proposed approach is found to be

an effective and efficient method for determining the
near-optimum sequence of a manipulator’s end effector
route visiting a number of task points taken into
account the multiple solutions of the inverse kinematics
problem. The proposed method proved to be rather fast
in finding an optimum or a near-optimum solution
within an affordable time. Another advantage is that the
multiple configurations of any non-redundant manip-
ulator are easily embodied in the encoding of the GA.
Unlike some of the methods referred in the introduction,
the proposed approach can be used to find the near-
optimum sequence for a 6-DOF manipulator operating
in the three-dimensional space within a reasonable
CPU time.
At this point, it should be stressed that the problem is

much more complex than the classical TSP problem,
because the configurations of the robot are also taken
into consideration.
Considering the future research work, the proposed

algorithm can be extended so that it can take into
account the obstacle avoidance. In addition, the
encoding of the proposed GA could be applied in
similar problems, where there is a finite number of ways
to reach a point or to move from point to point.
References

[1] Lawer E, Lenstra J, Rinnooy Kan A, Shmoys D. The travelling

salesman problem. Chichester, UK: Wiley; 1985.

[2] Dubowsky S, Blubaugh T. Planning time-optimal robotic

manipulator motions and work places for point-to-point tasks.

IEEE Conference on Decision and Control. Ft. Lauderdale, FL,

1985.

[3] Abdel-Malek L, Li Z. The application of inverse kinematics in

the optimum sequencing of robot tasks. Int J Prod Res 1990;28(1):

75–90.

[4] Edan Y, Flash T, Peiper U, Schmulevich I, Sarig Y. Near-

minimum-time task planning for fruit-picking Robots. IEEE

Trans Robotic Autom 1991;7(1).

[5] Shin K, Mckay N. Selection of near minimum time geometric

paths for robotic manipulators. IEEE Trans Automat Control

1986;31(6):501–11.

[6] Dissanayake M, Gal J. Workstation planning for redundant

manipulators. Int J Prod Res 1994;32(5):1105–18.

[7] Petiot J, Chedmail P, Hascho.et J-Y. Contribution to the

scheduling of trajectories in robotics. Robotic Comput Integr

Manuf 1998;14:237–51.

[8] Dubowski S, Blubaugh T. Planning time-optimal robotic

manipulator motions and work places for point-to-point tasks.

IEEE Trans Robotic Autom 1989;5(3):377–81.

[9] Hwang H-S. An improved model for vehicle routing problem with

time-constraint based on genetic algorithm. Comput Ind Eng

2002;42:361–9.

[10] Qu L, Sun R. A synergetic approach to genetic algorithms for

solving traveling salesman problem. Inform Sci 1999;117:267–83.



ARTICLE IN PRESS
P.T. Zacharia, N.A. Aspragathos / Robotics and Computer-Integrated Manufacturing 21 (2005) 67–79 79
[11] Chatterjie S, Carrera C, Lynch L. Eur J Oper Res 1996;93:490–

510.

[12] Rekleitis G, Aspragathos N. Optimization of the cycle time in a

robotic workcell using genetic algorithms. NMCR 2001, Cardiff.

[13] Tsai L, Morgan A. Solving the kinematics of the most general

six- and five-degree-of-freedom manipulators by continuation

methods. Paper 84-DET-20. ASME Mechanics Conference.

Boston, 7–10 October, 1984.

[14] Craig J. Introduction to robotics, 2nd ed. Reading, MA: Addison-

Wesley; 1989. p. 116–120, 126–7.

[15] Goldberg D. Genetic algorithms in search. optimation and

machine learning. Reading, MA: Addison-Wesley; 1989 p. 80-2.

[16] Holland JH. Adaption in natural and artificial systems. Michigan:

University of Michigan Press (Second edition: Cambridge, MA:

MIT Press; 1992).
[17] Mitchell M. An introduction to genetic algorithms, 2nd ed.

Cambridge, MA: MIT Press; 1996. p. 156–8.

[18] Michalewitz Z. Genetic algorithms+data structures=evolution

programs, 3rd ed. Berlin: Springer; 1996. p. 21, 219–20.

[19] Thomsen R, Fogel G, Krink T. A clustal alignment improver

using evolutionary algorithms. Proceedings of the 2002 Congress

on Evolutionary Computation—CEC’02. 2002. p. 309–14.

[20] Oman S, Cunningham P. Using case retrieval to seed genetic

algorithms. Int J Comput Intell Appl 2001;1(1):71–82.

[21] Davis L. Applying adaptive algorithms to epistatic domains.

Proceedings of the International Joint Conference on Artificial

Intelligence. 1985. p. 162–4.

[22] Ahn CW, Ramakrishna RS. A genetic algorithm for shortest path

routing problem and the sizing of populations. IEEE Trans Evol

Comput 2002;6(6):556–79.


	Optimal robot task scheduling based on genetic algorithms
	Introduction
	Formulation of the objective function
	Optimization based on GAs
	The representation mechanism
	Initial population
	The evaluation mechanism
	Reproduction
	Crossover
	Mutation
	Control parameters
	Termination conditions

	Discussion of results
	The encoding of the proposed GA
	The influence of the control parameters
	Computational time results

	Conclusions
	References


