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Abstract

Cellular manufacturing systems achieve the economies of scope and scale approaching that of flexible and high-volume
production when the machine/part clusters are totally independent of each other. However, most real systems contain
bottleneck machines and exceptional parts (exceptional elements) that reduce these economies. Many grouping methods
have been proposed for creating the initial machine/part cells where the presence of exceptional elements may greatly
affect their performance. Furthermore, multiple alternative solutions are often possible for a given grouping algorithm. In
this paper, the previous work dealing with exceptional elements is reviewed. A mathematical programming model used
for comprehensively dealing with exceptional elements is investigated. The effect of alternative initial machine/part
clusters on the total cost is evaluated. It is demonstrated that the mathematical programming model can provide useful
information in making trade-off decisions when exceptional elements are present. ( 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Cellular manufacturing (CM) has received con-
siderable attention from both practitioners and re-
searchers for the past two decades. CM is a special
application of group technology (GT) which is used
to cluster parts into families and machines into cells
for efficient production. By implementing CM one
can take advantage of parts similarities in design

attributes and manufacturing characteristics to
achieve the benefits of reduced setup time, reduced
manufacturing lead time, reduced material hand-
ling costs, reduced design duplication, and reduced
work-in-process inventory [1,2].

Designing cells totally independent of each other
is one of the major goals that enable CM systems to
realize the advantages of both the mass production
and the job shop environments [3]. In the ideal
CM layout, all operations of parts in a family are
completed within a single machine cell. However, in
less than ideal situations — as is often the case in the
real-world — fully independent CM clusters do not
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always occur; for example, in a survey of industry
users of cellular manufacturing, Wemmerlov and
Hyer [4] find that 20% of those with manned cells
and 14% of those with unmanned cells have situ-
ations where machines were shared between cells.
Furthermore, the authors report that only in about
78% of the cases do the processing times for parts
occur within a single cell. Parts that are processed
by more than one machine cell (i.e., exceptional
parts) and machines that are required by two or
more part families (i.e., bottleneck machines) are
known collectively as exceptional elements (EEs).
Exceptional elements are counterproductive to the
philosophy of cellular manufacturing in that they

1. disrupt the philosophy of CM to create an inde-
pendent environment,

2. reduce the benefits (e.g., economies of scale, and
setup time and cost reduction) of CM, and

3. cause the cost of intercellular movements.

In academic research, a few authors, e.g., Kern
and Wei [5], Shafer et al. [6], Logendran [7,8], Wei
and Gather [9], Seifoddini [10], Offodile [11], and
King and Nakornchai [12] recognize the problem
caused by EEs. However, of these authors, only
Kern and Wei, Shafer et al., Logendran, and Wei
and Gaither address the problem enough to pro-
pose some solution. Perhaps, this is due to the
non-trivial nature of the problem. Indeed, the clas-
sical 0—1 machine-clustering problem is a traveling
salesman problem [13], which belongs to a class of
problems classified in the literature as NP-com-
plete. Consequently, examples are often construc-
ted for CM grouping algorithms that do not
contain exceptional elements. Usually this is done
for simplicity and illustrative purposes but the
grouping method may not produce useful solutions
in practice.

Choosing an appropriate cell formation method
is an important decision in designing a CM system.
As pointed out by Shafer and Meredith [14] and
Mosier [15], different cell formation methods often
result in a different number of cells or solutions,
and a different number of EEs if they exist. Typi-
cally, a manufacturing cell consists of functionally
dissimilar machines that are used for processing of
part families. Thus, it should be expected that
owing to the dissimilarity of the machines, attain-

ment of mutually separable clusters of machine
cells would not be possible in all situations. Several
measures of performance such as number of EEs
and intercellular movements [16—18], bond energy
and bond strength [19,20], grouping efficiency
[21,22], and grouping efficacy [23] have been pro-
posed for evaluating the effectiveness of different
cell formation methods. A comparison of nine group-
ing methods on 68 problem sets using three different
grouping measures found that none performed best in
every situation [24]. The advantage of the mathemat-
ical programming method is that it is optimizing and
should result in the same solution so long as their
prevailing assumptions are not violated.

Even beyond such measures, other practical con-
siderations such as immovable machines will in
some manner affect the groupings to be considered.
Wemmerlov and Hyer [25] classify these consider-
ations into structural and operational issues. Struc-
tural issues include the selection of tools, fixtures,
material handling equipment, and the choice of
equipment layout. Operational issues include for-
mulation of maintenance policies, scheduling, in-
spection policies, reporting mechanism, and job
responsibilities. Grouping algorithms vary in their
ability to account for these issues and influence
the desirability of the resultant clusters. The large
number of different algorithms proposed in the liter-
ature attest to the significance and difficulty in solv-
ing the GT problem and in dealing with these issues.

Unfortunately, much of this CM research centers
on the development of manufacturing cell design
rather than on the merits of the design for a given
manufacturing situation. Most firms will face
a trade-off between operational and strategic costs
that are largely ignored [26]. From a practical
perspective, directly evaluating the alternative ma-
chine clusters themselves is a more salient issue
than evaluating the formation method used to de-
velop them. A primary concern in this evaluation is
the presence of exceptional elements.

Exceptional elements cause additional costs in
operating a CM system and hence they should be
dealt with in a cost-effective manner. Although
several approaches have been proposed in the liter-
ature, most of them are limited in scope or are not
cost optimal. Shafer et al. [6] present a mathemat-
ical programming model to find the optimal costs
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related to EEs for a given part family/machine cell
matrix. Three popular, pure strategies to deal with
EEs — machine duplication, part subcontracting,
and intercellular movement — are considered. The
optimal solution can be a mixture of the three. In
our view, the model of Shafer et al. [6] is sound and
provides a systematic method by which decision
makers can effectively choose among the different
options for dealing with EEs.

A basic assumption of the mathematical pro-
gramming model, as previously presented, is that
an initial cell formation matrix has been developed
by a grouping method. However, as noted, different
grouping techniques typically result in different
starting matrices while alternative solutions are of-
ten possible for a given grouping method. In this
paper, we investigate the effect of the alternative
starting part family/machine cell clusters on the
solution of the mathematical programming model.
We show that the mathematical programming
model is an appropriate vehicle for analysis of the
significant differences that alternative starting ma-
trices can have on the total costs. Furthermore, we
provide insights into how trade-off decisions can be
made by CM designers based on the individual cost
components and on the sensitivity analysis of the
mathematical programming model solution. The
mathematical programming model, therefore, can
be used to address the operational and strategic
trade-off issues important in GT implementation
but largely ignored in the literature [26].

The remainder of this paper is organized as fol-
lows. First, previous works addressing the EE
problem are reviewed. Then the mathematical pro-
gramming model is presented and illustrated by
numerical examples. Alternative starting clusters
that were formed following common cell formation
procedures with consideration of structural and
operational issues are used for illustration. Finally,
a discussion of the implications of the results and
directions for future research are presented.

2. Related work

While the published literature concerning CM
grouping algorithm numbers in the hundreds [3],
we have found papers addressing the EE problem

to be much less common. A few papers focus ex-
clusively on the effects of the different EE elimina-
tion methods on system performance or cost.
Often, though, the concern with EEs is addressed as
part of the grouping method being proposed.

EEs can be eliminated through several methods.
The duplication of bottleneck machines for the
elimination of intercellular moves dates back at
least to McAuley [27]. Burbidge [28] discusses five
approaches for removing EEs: (1) the part can be
redesigned, (2) the manufacturing process can be
changed, (3) the exceptional part can be rerouted
within the cell, (4) the cells can be modified to
accommodate the EEs, or (5) the exceptional part
can be subcontracted. Chan and Milner [17]
also discuss methods for elimination of EEs. As
Burbidge [28] does, they consider redesigning and
rerouting exceptional parts. Additionally, they
introduce the concept of remainder cell which is an
independent cluster containing all the EEs.
Furthermore, they discuss the duplication of bottle-
neck machines as well as simply allowing the inter-
cellular transfers to remain.

King [29] first proposes a rank order clustering
(ROC) algorithm in which binary weights are as-
signed to each row and column of the original
machine-part matrix. These weights are then con-
verted to their decimal equivalence and rearranged
in their descending order of magnitude. The algo-
rithm converges in two iterations and if mutually
separable clusters exist, they will be found. Other-
wise, the bottleneck machines are duplicated to
conform to the desired block diagonal pattern after
the sorting of the machine-part matrix. However,
the ROC solution is sensitive to the initial ordering
of the machine-part incidence matrix. The solution
can therefore result in partially separable clusters
for a problem that has mutually separable clusters
[18]. Because of the weighting process, there is the
potential for a large increase in problem dimension,
which taxes the computer memory, with a corre-
sponding resultant cost. King and Nakornchai [12]
address this concern by employing a much quicker
sorting procedure (called ROC2) in which the EEs
that result after the first two iterations of the ROC
are ignored. The ROC is then repeated on the
truncated problem to reveal a block diagonal pat-
tern. Depending on the resulting number of blocks,
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they could be merged and the EEs duplicated to
conform to the number of block diagonals.

A two-stage heuristic approach for designing
a CM system is given by Choobineh [30]. Stage
one consists of using a clustering technique with
a proximity measure to form part families. The
second stage utilizes a cost-based integer program-
ming model for machine cell formation, which
allows for machine duplication. Sule [31] and
Sarker and Yu [32] also develop two-stage proced-
ures for finding the optimal levels of machine dupli-
cation. These procedures compare the costs of
machine duplication to those for allowing intercel-
lular movement to remain. Shafer and Rogers [33]
present a goal-programming approach to cell
formation in which EEs can be handled by equip-
ment purchases or allowing the intercellular move-
ments to remain. Considerations of setup times and
machine utilization are simultaneously achieved.
A two-stage heuristic procedure is also presented to
simplify the solution process.

Askin and Chiu [34] present a heuristic grouping
procedure that allows for machine duplication
and intercellular moves. Logendran [8] proposes
a conceptual model for determining appropriate
bottleneck machine duplication where machine du-
plication costs and intercellular movement costs
are considered. Gunasingh and Lashkari [35]
employ an integer programming approach for
allocating machines to part families, which are as-
sumed known. Their formulation is cost-based and
allows for both machine duplication and the possi-
bility of having some intercellular movements
remain.

Seifoddini and Wolfe [36] introduce a machine
duplication procedure based on the number of in-
tercellular moves resulting from each bottleneck
machine. Machines with the highest number of
resultant intercellular moves are duplicated first
and the procedure is repeated until an intercellular
move threshold value is reached. Alternative solu-
tions can be investigated by changing the threshold
value. Seifoddini [10] formulates a cost-based
machine duplication process that compares the
machine duplication costs to the savings from re-
duced intercellular movement.

In all the papers discussed above, elimination of
EEs is mainly limited to duplication of bottleneck

machines. While many do allow intercellular moves
to remain, all ignore the possibility of subcontract-
ing exceptional parts. Some of the methods are cost
based but most are not. Also, note that the heuristic
procedures, which generally find good solutions,
are not guaranteed to be optimal.

A different approach is to eliminate EEs by sub-
contracting the exceptional parts. Kumar and
Vannelli [37] present two algorithms to identify the
minimal number or the minimal total cost of sub-
contracting exceptional parts. Vannelli and Kumar
[38] extend their work by allowing subcontracting,
machine duplication, or both. Wei and Gather [9]
give an optimal 0—1 integer programming model
that minimizes the intercellular movement and sub-
contracting costs related to exceptional parts sub-
ject to machine capacity constraints. Kern and Wei
[5] suggest a procedure using machine duplication
and subcontracting for EE elimination. In their
model, however, a mixed strategy of both duplica-
tion and subcontracting is not possible in elimina-
tion of a specific EE, making the model less flexible.

Shafer et al. [6] propose a mathematical pro-
gramming approach to dealing with EEs that
allows for the possibility of a mixture of strategies
for specific EEs. This is an important advance over
traditional pure strategies in eliminating EEs because
of its flexibility to determine the cost optimal config-
uration based on as many of the cost components as
justified. This capability can result in considerable
savings compared to other traditional methods.

3. Mathematical programming model

The mathematical programming model for com-
prehensively dealing with EEs, first introduced by
Shafer et al. [6], explicitly considers three cost
categories: (1) subcontracting costs; (2) machine du-
plication costs; and (3) intercellular transfer costs.
Under the assumption that an initial cell formation
solution, and hence the EEs, have been found, the
basic model is given as follows:
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where the decision variables are

X
i

"units of part i to be subcontracted,
½

kf
"number of machines of type k to be pur-

chased for cell f,
Z

ik
"number of intercellular transfers required

by part i because of no machine type
k available within the part’s cell,

M
ik
"number of machines of type k dedicated to

production of part i (utilization of machine
type k to produce part i)

and the major parameters are

A
k

" annual total cost of a machine of type k,
S
i

" incremental cost of subcontracting a unit of
part i,

I
i

" incremental cost for moving part i outside
of a cell,

C
k

" annual capacity of machine type k,
D

i
" annual demand for part i,

P
ik

"processing time of part i on a machine of
type k,

G
f

" set of exceptional parts in cell f,
H

f
" set of bottleneck machines required by

parts in cell f.

The above model is a mixed integer program
(MIP). In the objective function (1), the first com-
ponent represents the subcontracting cost, the sec-
ond represents the machine duplication cost, and
the third represents the intercellular transfer costs
associated with remaining EEs. Constraint (2) is
a logical balance on the number of intercellular
transfers for exceptional elements. Constraint (3)
ensures that the total number of machines of type k,
used for production of exceptional parts in a cell,
does not exceed the number of type k machines to
be purchased for that cell. Constraint (4) represents
the necessary integer restrictions for variables
X

i
, ½

kf
, Z

ik
.

This model explicitly considers total cost as the
basis in choosing the best combination of the strat-
egies for designing a CM system. It has practical
value and is very flexible in real-world situations
for dealing with EEs. The parameters employed in

the model are generally available for practical situ-
ations. The cost function and the constraints can be
expanded to meet the varied, individualized re-
quirements of different CM environments. It also
provides a systematic approach for management to
evaluate the economic consequence of EEs from
both operational and strategic perspectives.

In their original formulation and solution, Shafer
et al. [6] relax the integer restriction on the vari-
ables X

i
and Z

ik
for simplicity and solve it using

LINDO [39]. In our study, we avoid this relax-
ation step by using the IBM’s Optimization Sub-
routine Library (OSL) [40] on an RS/6000 Model
530 workstation. The OSL contains many user
controls and callable routines for solving large-
scale linear programs, mixed integer programs, and
quadratic programs [41]. Without the relaxation,
the problems are more complete, realistic, and the
solution more practical. Thus, OSL makes the solu-
tion of MIP problems of the magnitude likely to be
encountered in cellular manufacturing possible and
more efficient.

One of the major assumptions in using this
model is that the machine/part grouping is com-
pleted first. However, as discussed earlier, initial
machine/part matrices can have an effect on the
total cost of the EEs. In the next section, six differ-
ent starting machine/part clusters are formed and
used to evaluate the model. These machine/part
clusters are found using the single linkage cluster-
ing (SLC, [24]) and ROC [29] methods. These
methods are chosen because of their popularity and
because they are known to sometimes result in
alternative solutions. For example, SLC can yield
different solutions when alternative threshold levels
are used or when equal similarity coefficient values
occur. The ROC solution, on the other hand, can
be sensitive to the initial ordering of the machine-
part incidence matrix [18].

Once these machine/part clusters have been
found, we employ the mathematical programming
model and the parameters presented in Shafer
et al.’s [6] example to compare their economic
performance due to the EEs. Our objective here is
not necessarily to evaluate and compare different
cell formation methods. Some authors [14,24] have
done this. Rather, our major purpose is to see how
the initial formations of machine/part clusters can
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Fig. 1. Demand, capacity, cost, and processing information.

influence the total costs relating EEs, how these
costs could easily be determined and analyzed us-
ing a mathematical optimization model, and to
illustrate guidelines for practical use of the model.

4. Evaluating alternative cluster formulations

Fig. 1 contains the costs, capacities, and process-
ing information needed to run the mathematical
model. The entries in the main section of this figure
represent processing times while the other entries
represent costs, demands, and capacities. For
example, part 1 will be processed on machines 1—4
and 6. The processing times will be 2.95, 2.76, 5.54,
2.91, and 1.92 minutes respectively. Fig. 2 gives the
six alternative cell-clustering results. The four clus-
ter alternatives (Fig. 2a—d) are formed using SLC
while the two cluster alternatives are based on
ROC (Fig. 2e—f ). The desirability of one cluster
arrangement compared to another is not an issue
here, but rather the analysis of their effect on the
cost optimization process using the mathematical
programming model is.

Using the MIP formulation Eqs. (1)—(4), for the
above six different starting cell formations we
obtain the results summarized in Table 1. It is
obvious that employing the mathematical pro-
gramming model may produce a mixed strategy to
deal with exceptional elements and that the optimal
mixed policy may have substantial benefits com-

pared to a traditional, pure strategy for dealing
with EEs. As can be seen from Table 1, the total
cost for each of the mathematical programming
methods is significantly lower than those from each
of the pure strategies. The MIP solution of Alterna-
tive 1, for example, has the minimum cost at
$460,183.60. The cost of using machine duplication
alone to eliminate all intercellular moves will be
$641,937. The costs of pure intercellular moves and
subcontracting all exceptional parts will be
$652,862 and $782,262, respectively. We can see
that the combination of all three EE elimination
strategies can significantly reduce the total cost.

It should be noted here that the actual cost of the
original cell formation solution is that of the pure
intercellular move strategy. As shown in Table 1
and explained already, these costs can be signifi-
cantly reduced by employing the mathematical
programming model. Notice that the combined
MP strategies are superior to their corresponding
pure intercellular move strategies. In the case of
Alternative 1, the improvement in the MP mixed
strategy over its corresponding pure strategy is
about 42%.

Table 1 also shows that as a commonly used
clustering effectiveness measure, the number of EEs
may not be appropriate from a cost perspective.
Note that Alternative 2 has the smallest number of
EEs for the three-cell alternatives but it has the
second highest cost among them. Therefore, a com-
pany deciding to implement Alternative 2 on the
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Fig. 2. Alternative cluster formations.

basis of the number of EEs would pay a 5% total
cost premium over Alternative 1.

The results for the three cluster alternatives also
illustrate the cost differences for configurations
with the same number of EEs. In Table 1, three of
the groupings contain eight EEs. However, a range
of $64 527 or 14% exists between the highest cost
configuration (Alternative 4) and the lowest (Alter-

native 1). Certainly, management would consider
cost differences of this magnitude in deciding the
configuration best suited to its needs. Given the
problem parameters, the mathematical program-
ming approach provides this important cost
information enabling management to evaluate
possible options. At the same time, it insures that
each alternative configuration is cost optimal.
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Table 1
Mathematical program (MP) and pure strategy summary results

Alt. No. of
cells

No. of
EEs

MP total
cost

MP cost components Pure strategy cost

Machine
duplication

Part subcon-
tracting

Intercellular
moves

Machine
duplication

Part subcon-
tracting

Intercellular
moves

1 3 8 $460183.60 $185 182.00 $134937.60 $140064.00 $641 937.00 $782262.00 $652 861.60
2 3 7 $483313.60 $332 102.00 $61566.40 $89645.20 $590 016.00 $869172.80 $684 273.20
3 3 8 $462761.40 $309 618.00 $61566.40 $91577.00 $567 531.00 $869172.80 $754 673.20
4 3 8 $524710.60 $332 102.00 $180237.00 $12370.80 $641 020.00 $869172.80 $761 547.60

5 2 7 $364364.20 $235 768.00 — $128596.20 $472 573.00 $782262.40 $533 988.00
6 2 5 $317797.60 $193 354.00 — $124443.60 $387 745.00 $665910.40 $436 926.00

Determining the optimal number of cells is
a controversial issue in CM. This decision is highly
subjective and often is based on personal judgment
with consideration of available spaces, production
volume, setup times, the effect of cell interdepen-
dence, etc. [42]. Knowledge of the cost impact in
making the operational and strategic tradeoff deci-
sions inherent in choosing among the different al-
ternatives would be valuable.

Alternatives 5 and 6 in Table 1 contain the re-
sults for two cluster groupings. It can be seen that
the cost optimal solution for two clusters is over
$142 000 less than the minimum cost for the three
cluster alternatives — a decrease of nearly one-third.
It is obvious that as the number of cells approach
the number of machines, the cost of inter-cellular
movements will increase. Fewer parts are processed
per cell, thereby increasing the likelihood of inter-
cellular movement costs. Thus, loss of cell auton-
omy could be compared with this cost difference to
determine if it is justified.

In addition, note that neither of the two cluster
alternatives results in subcontracting of parts. Fur-
thermore, the two cluster options do not require
purchasing machines in any greater numbers than
the three cluster alternatives. Therefore, if the ex-
ceptional parts are strategically important for the
organization to produce or if the firm is averse to
additional capital investment, the two cluster alter-
natives may be attractive.

Now, to gain more insight into the problem
structure and solution, we consider one of the alter-

native cluster formations in detail. Alternative 3 in
Fig. 2c is chosen to illustrate the use of all three
pure strategies for the elimination of a single EE.
Table 2 contains specific information for the solu-
tion of Alternative 3 while Table 3 contains OSL
output for Alternative 3.

Alternative 3 is a three-cluster example with
8 EEs, some of which have a greater impact on the
optimal solution. For example, consider excep-
tional part 8, which has a relatively high demand
and requires processing on machines in all three
cells (see Fig. 2c). Compare it to exceptional part 1,
which has a lower demand and is associated with
only two of the cells. Note that the processing times
of part 8 is higher than that of part 1 as far as the
bottleneck machines are concerned. However, the
intercellular movement cost of part 8 is lower than
that of part 1 while its subcontracting cost is higher.
These relative characteristics of exceptional part
8 suggest that the optimal solution may involve
a mixed strategy.

Indeed, Table 2 shows that to deal with excep-
tional part 8, all three strategies for dealing with the
EEs should be used. Under a pure intercellular
move policy, part 8 has 90,768 intercellular moves
because the 45 384 parts have to be processed in the
other two cells. In the cost optimal solution, only
5501 intercellular moves remain with the rest being
eliminated via machine duplication and subcon-
tracting. The OSL output in Table 3 shows that
both machines 4 and 8 are purchased for cell three
while machines 1 and 7 are duplicated for cell two
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Table 2
Alternative 3 solution detail

Exceptional
parts

Initial
intercellular move

Units to
subcontract

Intercellular moves
eliminated due to
new machine

Remaining
intercellular
moves

1 32 128 0 32 128 0
2 27 598 0 0 27 598
7 46 196 0 46 196 0

10 44 000 0 44 000 0
5 18 707 0 18 707 0
8 90 768 13384 58 499 5501

Total cost"$462,761.4

Table 3
OSL output for Alternative 3

Variable Activity Dual Lower
limit

Upper
limit

X1 4.2 Infinity
X2 1.5 Infinity
X7 4.4 Infinity
X10 5.0 Infinity
X5 5.0 Infinity
X8 13 384 2.0 13 384 Infinity

Y1,2 1 50 784 1 Infinity
Y4,3 1 67 345 1 1
Y6,1 1 75 225 1 1
Y8,1 388.852 Infinity
Y8,3 1 !19 677 1
Y7,2 1 52 741 1 Infinity

Z1,6 3.7 Infinity
Z2,8 27 598 Infinity
Z7,7 2.8 Infinity
Z10,1 3.2 Infinity
Z10,7 3.2 Infinity
Z5,4 2.8 Infinity
Z8,4 5501 2.6 5501 Infinity
Z8,8 Infinity

M1,6 51.40% Infinity
M2,8 Infinity
M7,7 44.66% Infinity
M10,1 84.52% Infinity
M10,7 45.65% Infinity
M5,4 40.38% Infinity
M8,4 59.62% Infinity
M8,8 100.00% Infinity

and machine 6 for cell one. The machine clusters in
the optimal solution to Alternative 3, therefore, are
comprised of machines 1—6 in cell one; machines
1 and 6—9 in cell two; and machines 4, 7, and 8 in
cell three. Intercellular moves, meanwhile, are elim-
inated for every exceptional part except parts 2
and 8.

The OSL output in Table 3 contains information
from the optimal mathematical programming solu-
tion that can be used by designers for sensitivity
analysis. The first column in Table 3 gives the vari-
able name. The second column contains the vari-
able’s value in the optimal solution with blanks
representing a level of zero. The dual column shows
how much the objective function’s coefficient for
that variable would have to change before the basic
solution changes. The lower and upper limit col-
umns specify the range of values of the variable’s
activity for which the current basic variables re-
main the same. This sensitivity information pro-
vides valuable information concerning areas for
targeting process improvement activities.

The dual prices for the variables in Table 3
contain information concerning which parts are
potentially attractive (or unattractive) for subcon-
tracting. Notice that the dual variables associated
with the X

i
variables (subcontracting levels) indi-

cate that for exceptional parts 1, 5, 7, and 10 the
current basic solution remains valid until the cost
of subcontracting drops to zero. Therefore, these
parts can effectively be excluded from subcontract-
ing considerations. However, parts 2 and 8 have
dual prices of $1.5 and $2.0, respectively. These
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prices suggest that if the subcontracting costs for
parts 2 and 8 could be decreased to the same rate as
their intercellular move costs, the current basis
would change and resolving the model would result
in a different optimal mixed strategy. The firm may
therefore wish to work with current vendors to
make the supply chain more efficient or seek bids
from new suppliers of these parts.

The dual prices for the ½
kf

variables indicate
that a basis change does not occur until the entire
machine cost coefficients drop to zero except ma-
chine 8 for cells 1 and 3. The machine duplication
annual cost would have to change by only $389 per
year for machine 8, cell 1 for the basic solution to
change. This represents only six-tenths of one per-
cent of the annual machine costs for machine 8 and
management may therefore wish to review the
maintenance and operational procedures to see if this
small saving can be realized. Finally, the dual vari-
ables for Z

ik
show that the current basis is optimal

until the cost of intercellular moves drops to zero.

5. Direction for future research

The basic model given in Eqs. (1)—(4) can be
expanded to reflect production limitations or man-
agerial policies. For example, the following
constraints:

+

i|Gf

X
i
S
i
)C

x
, (5)

+

k|Hf

+

f

½
kf

A
k
)C

y
, (6)

+

i|Gf

+

k

Z
ik
I
i
)C

z
, (7)

may be added to the basic model. They represent
capacity restrictions on subcontracting, machine
duplication, and intercellular transfer costs, respec-
tively. If machine duplication costs need to be kept
below a certain budgetary limit, C

y
, Eq. (6) should

be used. Setting any two of the right-hand sides of
Eqs. (5)—(7) equal to zero, and the third to a large
value, will force the pure strategy solution as pre-
sented in Table 1. The dual values to these con-
straints represent the amount that the objective

function would improve given a unit change in the
right-hand side. This information is useful for man-
agement to determine the effect the capacity con-
straints have on the total cost and to act accordingly.

Although the model presented in this research
addresses the major issues in EEs, other issues such
as intra-cellular movement, relocating production
machines and multiple objective criteria should be
investigated. Thus, Eq. (1) could be expanded to
include the cost of intra-cellular movements and
relocation of production machines. In other words,
the processing and sequencing requirements of the
parts could be included in the model for a truly
efficient production. Heretofore, it has been impli-
citly assumed that the within cell scheduling and
processing requirements of the parts are insignific-
ant. Also, a more robust objective function based
on goal programming and other technologies could
be used to incorporate the objectives of minimizing
setup and production costs and, maximizing
machine utilization.

Offodile et al. [3] notes, the literature is replete
with algorithms for solving the well-structured
machine-part 0—1 incidence matrix with only very
few addressing problems of the machine loading
variety. The well-structured problems result in
mutually separable clusters. However, in the real
world, EEs occur and the problem becomes how to
best manage them. Shafer and Meredith [14] com-
pared selected machine-part formation methods
and find that some of them work best under certain
conditions. Another possible extension of this re-
search would be to conduct a more comprehensive
evaluation of the numerous machine-part cluster-
ing algorithms with the objective of developing tax-
onomy of their capabilities and limitations. Then,
a select number of problems can be solved with the
most appropriate methods and compared with the
mathematical model as illustrated in this research.

6. Summary

Cellular manufacturing is gaining popularity be-
cause of the potential benefits that can be realized
in many manufacturing systems. However, there
are various problems in the design of a CM system.
One critical issue is how to classify parts into families
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and machines into cells to create an independent
environment for efficient, flexible production.
Group technology is essential in the formation of
machine cells/part families in designing a CM sys-
tem. Although considerable amount of research has
been published on the methods for grouping part
families or machine cells, few of them focus on the
practical or economic consequences of exceptional
elements, which often occur in real manufacturing
systems. The existence of EEs not only violates the
independence assumption of machine-cells or part-
families but also causes implementation problems.
Traditional actions taken to remove EEs include
machine duplication, part subcontracting, and even
allowing intercellular movements to remain. How-
ever, it is often difficult to evaluate which one is the
best from a cost perspective since there are other
practical constraints involved in the decision process.

The mathematical programming model originally
proposed by Shafer et al. [6] is a comprehensive tool
to alleviate the possible economic effect due to the
presence of EEs. Their model is flexible and often
leads to a mixed policy, which is the most cost
effective compared to traditional pure strategy in
dealing with EEs. However, there is a limitation in
their model assumption, that is, the model cannot be
used until an initial cell formation solution is speci-
fied. An earlier study, by Shafer and Meredith [14]
shows that the part family grouping procedures per-
formed relatively well compared to the machine-part
grouping procedures. We showed that different
starting clusters, which can result from clustering
methods like SLC or ROC, for example, could have
significant economic consequences on the total cost.
It is also illustrated that the mathematical program-
ming model is a more appropriate vehicle than EEs
to analyze these cost differences especially consider-
ing the operational and strategic trade-offs necessary
in practice. Consequently, the model provides valu-
able information needed by practitioners to make
decisions in many important CM design aspects.
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