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Abstract

In this paper, a mathematical model for cellular manufacturing system (CMS) design which incorporates three crit-
ical aspects — resource utilization, alternate routings, and practical constraints, is presented. The model is shown to be
NP-complete. A linear, mixed-integer version of the model which not only has fewer integer variables compared to most
other models in the literature, but one that also permits us to solve it optimally using Benders’ decomposition approach
is presented. Some results that allow us to solve the problem efficiently as well as computational results with Benders’
decomposition algorithm and a modified version are presented. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the basic problems in the design of a cellular manufacturing system (CMS) is that of cell forma-
tion. This involves identifying: (i) parts with similar processing requirements; (ii) the set of machines that
can process these parts, and (iii) dedicating the set of machines to the manufacture of the parts. The set of
machines is called a machine cell and the corresponding set of parts is a part family. There are a number of
benefits in identifying machine cells and corresponding part families. These are outlined in several sources
including Wemmerlov and Hyer (1989). Industry has recognized these benefits and a large number of com-
panies have implemented CMSs throughout the world, especially in the last decade.

Academia has attempted to solve the cell formation problem using several techniques. One of the tech-
niques discussed most is the clustering technique. It involves identification of block diagonal clusters by re-
arranging the rows and columns of a given 0-1 part-machine incidence matrix [a;;] (see Fig. 1(a) and (b)).
This matrix represents the relations between parts and machines — if a;; is 1, it indicates that part J visits
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Fig. 1. 0-1 Part-machine incidence matrix.

machine j; a ‘0’ indicates that part i does not visit machine ;. There are some well known clustering
techniques for the cell formation problem. These include similarity coefficient algorithm by McAuley
(1972), ROC (rank order clustering) algorithms by King (1980) and King and Nakornchai (1982), direct
clustering algorithm by Chan and Milner (1982). These and other algorithms have been reviewed in Vakh-
aria (1986), Wemmerlov and Hyer (1986), and more recently in Singh (1993). In addition, there are papers
dealing with other practical issues such as machine utilization, consideration of various costs, safety factors,
upper bound on machine cells, size of each cell and capacity. For example, see Ballakur and Steudel (1987),
Askin and Subramanian (1987), Heragu and Gupta (1994) and Grznar et al. (1994). Such papers have been
reviewed in Heragu (1994) and Offodile et al. (1994).

Recently, researchers have recognized the importance of considering three critical aspects in the CMS de-
sign problem. The first aspect has to do with the explicit consideration of ‘voids’ in the final block diagonal
structure. Chandrasekharan and Rajagopalan (1986) and Kumar and Chandrasekharan (1990) argued that
in addition to minimizing the number of nonzero elements outside the final block diagonal structure in Fig.
1(b), we must also attempt to minimize the number of zero elements (voids) inside the blocks. Although they
proposed two quantitative measures — grouping efficiency and its improved version, grouping efficacy, to
evaluate goodness of CMS design in terms of number of exceptional elements and number of voids in the final
block diagonal structure, they did not propose any technique for the problem. Adil et al. (1997) and Sriniva-
san and Narendran (1991) developed approaches that explicitly considered minimization of voids and excep-
tional elements. However, both are heuristic approaches and do not consider important practical constraints.

Throughout this paper we use the term ‘resource utilization of parts’ rather than ‘voids’ because we feel
the term ‘voids’ is unclear to most readers. Moreover, minimizing the so-called voids is equivalent to max-
imizing the utilization of resources in the cell visited by each part. The first aspect discussed above is in con-
trast to previous cluster formation techniques which only attempted to minimize the number of nonzero
elements (exceptional elements) outside the final block diagonal structure.

The second aspect involves consideration of alternate routings while designing a CMS. Unlike tradition-
al manufacturing systems in which each part typically has only one routing or process plan, in advanced
manufacturing systems, the consideration of alternate routings has become an attractive practice for pro-
duction managers. It provides planning flexibility and allows us to improve throughput rates. For example,
if a part has multiple process plans, and it turns out that one of the machines in the primary process plan is
busy or down for repair, we are able to route the part using an alternate plan. There are only a limited num-
ber of papers dealing with this aspect. Kang and Wemmerlov (1993) provided a list and brief discussion of
most of these papers. However, to date, the objective of most papers dealing with alternate routings is only
for route selection, i.e., they only try to find the best route for each part from the available routes so as to
minimize the intercell movement of parts. Once the best route is determined using one of the available al-
ternate plans, the remaining are discarded and not considered further.
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The third aspect that has long been ignored is the consideration of practical constraints while designing a
CMS. Examples of such constraints are: capacity, safety, budget, upper limit on the number of cells and
number of machines in each cell. A thorough discussion of these constraints is provided in Heragu and
Gupta (1994).

In this paper, we expand the model in Adil et al. (1997) to consider the three aspects discussed previous-
ly, develop an efficient linear, mixed-integer version of the model and solve it optimally. It should be noted
that existing techniques (most of which do not consider the issues and constraints addressed in this paper)
are heuristic in nature.

2. Model description

The mathematical model presented in this section assumes that: (1) product mix and product demand
information is known a priori and constant, and (2) operation requirements for each part are known.
The notation used is provided below:

Parameters
i,j,k part index, machine index, cell index, respectively
a;j part-machine processing indicator

¢ intercell movement cost per unit of part i

v; number of units of part i

tij time for processing one unit of part i on machine ;
uij cost of part i not utilizing machine j

T; available operating time on machine j

0ij number of times part i requires operation on machine j
Mp;»  minimum number of machines permitted in a cell
My.x maximum number of machines permitted in a cell

S sets of machine pairs that cannot be located in the same cell
S5 sets of machine pairs that must be located in the same cell
)4 total number of part types

q total number of machines

r maximum number of cells permitted

Decision variables

N; number of units of machine j required

Xik variable indicating whether or not part i is processed in cell &
_ { =0 if machine j is not in cell &

ik =1 otherwise

In the above notation, the parameter g;; is set to 0 if machine j is not required for part i. Otherwise, it is
set to a value greater than 0 but less than or equal to 1, depending upon whether part i is partially or en-
tirely processed on machine j. Similarly, the decision variable x;; takes on a value of 0 if part i is not pro-
cessed in cell k. Otherwise, it takes a value greater than 0 but less than or equal to 1, depending upon
whether part i is partially or entirely processed in cell j.

2.1. Problem formulation

The problem of determining the required number of machines to satisfy capacity constraints so that the
total purchase cost is minimized, is trivial and can be obtained by using the following rule:
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N — [Z ; U,'a,-jt[,}
] 9

T

where [e] is the smallest integer greater than or equal to e.

Model I {minimize cost related to intercell movement and resource under-utilization)

¥

q
minimize Z Z Z civiogaixiu(l — yi) + Z Z wijvi(1 — aij)xuyi (1)

i=1 j=1 k= i=1 j=1 k=l

subject to inkzl, i=12,...,p, (2)
Y =1 Jj=12..4q (3)
k=1
ysk+ytk<la 21,2,...,r,{s,t}€S1, (4)
ysk—y,kzo, k=1,2,...,r,{s,t}€S2, (5)
Mmin< Zyjk <Mmax: k=1,2,...,r, (6)

J=1

0<xp <1, i=12,....p, k=12,...r, (7)
yik =0or 1, i=12,...,q, k=12,...,r. (8)

The objective function (1) minimizes the total cost of intercell movement as well as the cost of resource
under-utilization. Note that u;;, the under-utilization penalty for part i-machine j pair is a function of part
i’s volume (v;), so that the resource under-utilization weight is not insignificant in comparison to the inter-
cellular movement weight in the objective function. Constraint (2) requires that each part be allocated to
only one of r cells. Constraints (3) and (8) ensure each machine can only be assigned to one cell. Constraint
(4) ensures that the machine pairs included in S; cannot be placed in the same cell. Similarly, constraint (5)
ensures machine pairs in S; have to be placed in the same cell. Constraint (6) specifies the minimum and
maximum number of machines allowed in any cell.

2.2. Special features of model 1

Model 1 has several special features not found in other papers. These are discussed below.

Consideration of alternating routings: In model 1, we assume all the alternate routes will be used during
production runs, some more often than others, to cope with machine down time and also to introduce plan-
ning flexibility. Use of alternate routes improves machine utilization and system throughput rate. To in-
clude alternate routings in our model, elements of the part-machine incidence matrix-a;’s, are
considered as real variables between 0 and 1. Traditionally, they have been given binary values. For exam-
ple, if part 1 has two routes with the first through machines 1, 3, 5 and the second through machines 1, 4, 5,
and the probability of using the two routes is 0.8 and 0.2 respectively, then in the part-machine matrix, we
assign @11 = 1, a13 = 0.8, a;4 = 0.2, and a15 = 1.

Consideration of resource utilization: In model 1, we explicitly consider resource utilization. A penalty
cost is given for parts which do not or partially utilize machines in the same cell. The value of ;; is deter-
mined by the designer. If high machine utilization is desired, then u;; is set to a large value; otherwise it is set
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to a lower value. By properly assigning values to u;, one can introduce flexibility to the model and form
large loose cells or small tight cells. Once again, our approach is different from that found in most other
papers which consider only the intercell movement cost and not resource under-utilization cost.

Consideration of practical constraints: Practical constraints are introduced in model I via constraints (4)—
(6). Safety and technological considerations are provided in constraints (4) and (5) and upper/lower limits
on cell size are imposed by constraint (6). To understand the safety/technological aspects, let us consider a
situation where a heat treatment station and a forging station must be placed adjacent to each other for
safety reason. If these stations are placed in $; (sets of machine pairs that must be located in the same cell),
constraint (5) will ensure the two stations are grouped in the same cell. Similarly, painting and welding sta-
tions usually cannot be placed adjacently. Again, if this pair of stations is placed in S} (sets of machine pairs
that cannot be located in the same cell), constraint (4) will enforce the two stations to be located in different
cells. Some researchers (e.g. Song and Hitomi, 1992) impose such constraints indirectly by placing an upper
limit on cell size and by trial and error seek solutions which satisfy the safety/technological constraints.

Imposition of upper limit on the number of cells: We do not assume that the number of cells is predeter-
mined. In practice, designers usually do not know the number of cells that would yield the best CMS design.
Thus, it is unrealistic to set the maximum number of cells to a given value (Kusiak, 1987). Hence, in our
approach, the optimal number of cells is determined by the model. The optimal number of cells is equal to
the initial assigned number of cells minus the number of empty cells which will be known from the solution.
The initially assigned number of cells is any large number and can be set equal to the maximum number of
machines in the problem. Of course, if the user wants to set the maximum number of cells to a specific value
less than the optimal number determined by the model, it can be easily done and in fact, makes our model
easier to solve. If set to a value larger than the optimal, the solution returned will have the optimal number
of cells, i.e. less than what the user requested.

Consideration of part volume and intercell movements: Most existing approaches implicitly assume that
the volume of parts manufactured is the same for each part. Unlike Adil et al. (1997) and many other re-
searchers, we use part volume information in determining the intercell traffic. We also assume that the cost
of intercell movement is the same between any pair of cells for a given part. However, this cost need not
necessarily be the same for all parts. This is because the intercell movement cost depends on the material
handling devices used which may be different for different parts. Although our model ignores the distance
between cells, we feel this underestimation does not cause serious problems for two reasons. First, there is a
large fixed cost involved in moving material between cells and the variable (distance) component is typically
small. If this is not true in a problem, we can reduce the weight given to interceltular movement in the ob-
jective function. Second, the number of interceil moves is generally small. Furthermore, since the layout of
cells is not known at this stage, it is impossible to determine the exact intercell movement cost.

Relaxing integer restrictions on key decision variables: Although no integer restrictions are placed on de-
cision variable x;’s, it can be shown that there is at least one optimal solution to the cell formation model
such that all x;’s take on binary values. This is discussed in Section 3.4. Further, a straightforward algo-
rithm can easily identify this solution by inspection. Hence, integer restrictions are not necessary for x;
variables but only for y; variables. As a result, our formulation has substantially fewer integer variables
(equal to number of machines times number of cells) than other formulations in the literature. Hence, large
problems which have thus far been solved heuristically, can now be solved optimally.

2.3. Dealing with multiple copies of machines

In practical applications, it is common to have multiple machines of a given type. This aspect is consid-
ered in many papers on CMS design. However the multiple machines of a given type are used to identify
machine cells/part families so that the number of exceptional elements is minimized. In fact, some authors
even suggest that we purchase additional machines of a given type and duplicate them in appropriate cells
to minimize such exceptional elements and thereby reduce intercell material handling costs (for example, see
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Seifoddini and Wolfe, 1986). We feel that such an approach which calls for high capital expenditures to
minimize small operating costs is not practical. Moreover, the main reason we have multiple machines is
to ensure that the system has adequate capacity to process all the parts. As a result, in our analysis of
the CMS design problem, we first determine the required number of machines of each type to satisfy the
capacity constraint and work with these numbers to design a CMS.

Like most existing cell formation models and algorithms, model I implicitly assumes that there is only
one unit of each machine type. In practice, this is generally true for most machine types, but not all. There
are typically a few machine types of which multiple copies are available. Of course, as discussed earlier, this
information can be determined using the N, formula and therefore is known prior to solving model I. If
multiple units of one or more machine types are indeed available, we suggest that one of the following three
approaches be used.

(1) Distribute jobs a priori to multiple copies of machines and then solve model L.

(2) Solve model I first assuming there is only one copy of each machine type and then deal with multiple
copies of machines appropriately.

(3) Consider only machine types with single copy while solving model I and then deal with multiple copies
of machines appropriately.

In the first approach, we require the user to assign a;; values based on part volume and available capacity
for each part that requires processing on a machine type with multiple copies. This is reasonable, since the
user provides all other a;; values (i.e. those pertaining to machine types of which there is a single copy).
Ideally, it is better to set a;;’s as decision variables, but it will introduce further nonlinearity in our already
quadratic model I. Hence, we suggest that a;; values be chosen according to plant manager’s experience.
For example, suppose that part types 1, 2, and 3 require processing on machine type 1 of which we have
two copies. Further, let the production volume of parts 1, 2 and 3 be such that one unit of machine type 1 is
adequate to process part types 1 and 3 and the other unit to process part type 2. Then each copy of machine
type 1 is treated as a separate machine type say 1, 2. Two columns corresponding to these are added to the
[a;;] matrix and ay;, ax, and a3 values are set to 1. For this [a;;] matrix, we can obtain an optimal solution
via model L.

In the second approach, we solve model I assuming that there is only one unit of each machine type. We
then assign the available multiple copies of appropriate machine types to cells such that machine capacity
requirements in each cell are satisfied and the intercell movement cost and resource under-utilization costs
are minimized. This can be done rather easily.

In the third approach, we only consider the machine types with single copy and disregard all machine
types with multiple copies while solving model 1. After model I is solved, we then assign multiple copies
of machines to cells such that intercell movement cost and resource under-utilization cost are minimized
and machine capacity requirements in each cell are satisfied. The third approach is better than the second
one because machine types with multiple copies are often bottleneck machines that are required by many
parts. For such problems, the second approach may provide a solution with several large, loose cells. A
large loose cell is one with large number of parts and machines and low resource utilization.

2.4. Model modification

Model I is nonlinear. Most nonlinear problems are usually much harder to solve optimally than linear
problems. Hence, we reformulate it as a mixed-integer linear programming model by introducing a new set
of variables z;;; to replace the x;yu product terms. The new model is shown below.

Model Il ( Mixed-integer problem)

P9 r
minimize E E g CiV;0;ja;iXik +

q r
=1 j=1 k=1 i=1 j=1 k=1

(uy(1 = ayy) — civioyay)ziu 9)
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subject to  (2)—(8)

i < Xk, i=1,2,...,p =12 . .qgk=12..r (10)
Zie < Vit i=1,2,....p =12 . .gk=12..r (11)
Xty —zg <1, i=1,2....p =12 ,qk=12..,r (12)
0 <z <1, i=12,....p =12 ..gk=12..r (13)

Model I without constraints (4)-(6) reduces to the clustering problem which can be relaxed into a min-
imum k-connected graph theory problem with extra constraints (King and Nakornchai, 1982). The latter is
known to be NP-complete (Garey and Johnson, 1979). Hence, model I is NP-complete as well.

3. Solution algorithm — Benders’ decomposition approach

Due to the combinatorial nature of the cell formation problem, more heuristic than optimal algorithms
have been developed. Since the number of integer variables in our formulation is relatively smaller than
those in others, we use Benders’ decomposition approach to obtain optimal solutions for problems which
have thus far been solved heuristically. Benders’ decomposition approach was proposed to solve mixed-in-
teger problems by Benders (1962). The basic idea is to iterate between two problems, a subproblem and a
master problem, both of which are derived from the original mixed-integer problem. If the objective func-
tion value of the optimal solution to the master problem is greater than or equal to that of the subproblem,
we terminate the iteration and obtain the optimal solution of the original mixed-integer problem. Otherwise,
we add Benders’ cuts, one at a time to the master problem, and solve it until the termination criteria are met.

3.1. Deriving primalldual and master problems

To apply Benders’ decomposition, we need to derive a primal problem (P) from model II by fixing the
values of integer variables y;’s to yield a feasible solution and thus ignoring the constraints with only yy,

ie. (3)(6)
(P) — Primal problem

Z Z Z CiV0ai Xk + Z Z Z u,]v, a,, Civioijaij)zijk (14)

s.t. Zijk — Xik < 0 v i»jaka (15)
Zijk <yjk v i7j7k, (16)
Xik — lek l_yjk v i7j7k (17)

and (2), (7), (13).
Next, we derive the dual problem (D) from the primal.
(D) — Dual problem

ZZZOIW + ZZZ(—yjk)m,-jk + ZZZ(yjk - 1)n,-jk + ZS,' (18)
i i i J i Jj k i
Z l,]k + Omuk + znuk +5; < Z(c,—v,—a,-jo,-j) Y i, k, (19)

— Lk — myge + ne + 0s; < uyvi(1 — ayy) — civioya; Vi, k, (20)
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Lijey mijiynie 2 0V i, j &, (21)
§; free Vi (22)

The dual problem is linear with four sets of real variables /i, my, ni, and s; corresponding to con-
straint sets (15)-(17) and (2), respectively. Note that constraints (2) and (15) force x; < I and zj < 1.
We therefore do not need dual variables corresponding to the upper bounds in constraints (7) and (13).
Last, we formulate the master problem.

(M) - Master Problem

minimize Z
subject to  (3)-(6), (8),

Z> ZZ(Z(ﬁiﬂc —fhijk)>yjk+Z§,-— ZZZ;,% (23)
. f ik

Jj k i
Z

\Y%

0.

Mk, Ay, $i in (M) are optimal values of the variables m;j, n, s; obtained by solving (D). Although the
master problem is a mixed-integer problem, it can be easily converted to a pure 0-1 integer problem by re-
writing the only continuous variable Z in the master problem as a function of additional binary variables to
make it a pure integer problem as discussed in most introductory Operations Research textbooks, for ex-
ample Taha (1992). Only the constraints with y; terms in model II are considered in the above model; con-
straint (23) is Benders’ cut which is derived from the objective function of the dual problem.

3.2. Benders’ decomposition algorithm
Formally, Benders’ decomposition algorithm is as follows:

Algorithm 1

Step 0. Set LB = —o0, UB = +00, y;1 = 1 for Vj and y; = 0 for Vj # 1,k in (D).

Step 1. Solve (D) and set the current optimal solution value z = UB if 2 < UB. If LB > UB, stop. We have
the optimal solution of the original mixed-integer problem. Otherwise go to Step 2.

Step 2. Update (M) by adding a new constraint (23) to it, solve the model and obtain optimal solution z*
and optimal values for integer variables yj. Set LB = z* and update y;s in the dual problem. Go to
Step 1.

Further interpretation of the algorithm is provided below. First, solution of the master problem may
yield no feasible solution for the original problem. In that case we need to generate an extreme ray and
include it in the master problem. However, in our model we can guarantee that the master problem gener-
ates only feasible y;’s, because we included constraints with y;, terms from model I ( i.e. constraints (3)—(6))
in the master problem.

Second, the solution we get from master problem is a lower bound on the original problem’s objective
function value. For each iteration, we add a stronger cut to the master problem to improve the lower
bound. If the lower bound is greater than or equal to the optimal solution in (D), we get optimal solution
of the original problem. Of course, the master problem is always feasible since the original problem is
feasible.

Last, the computational efficiency of the algorithm mainly depends on the number of iterations required
and time needed to solve the master problem in each iteration. Although the master problem can be con-
verted into a pure integer programming problem, it still takes a considerable effort to solve it optimally in
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each iteration. Therefore, a variant of Benders’ decomposition presented in Geoffrion and Graves (1974) is
used. Instead of solving (M) optimally in each iteration, we solve only until the first feasible solution is
found with value below UB — ¢, ¢ > 0, where UB is the best solution of (D) among the iterations, and
¢ is an allowed error margin. Of course, the master problem has to be modified as shown below.

3.3. The modified Benders’ decomposition algorithm

The master problem can be modified as
(M') — Modified master problem

min Z Z Z —YikMijk + Z Z Z()’jk = Dny + Zsi (24)
i 7 k . i J k i
s.t. (3)-(6),(8) and

Zsi - ZZ Z;’jik + ZZ (Z(ﬁijk - ’hijk))y_jk < (UB —¢). (25)
! iy k ik i

(M) is a pure integer problem. The objective function is adopted from the dual objective. However, it can
be arbitrarily assigned without affecting the solution. Also, it can be proved that if ¢ > 0, constraint (25) will
ensure that the same integer solution will not be regenerated. The modified algorithm is stated below.

Algorithm 2

Step 0. Set UB = +00, y;1 = 1 for Vj and y = 0 for Vj # 1,k in (D).

Step 1. Solve (D); set optimal solution = Z and update UB = min{UB, z} .

Step 2. Update (M) by changing the UB value if necessary and adding a new constraint (25). Obtain a
feasible solution to (M’) and update y; values. Go to Step 1. If (M) is infeasible, terminate. We
get an e-optimal solution.

3.4. On solving the dual

While the simplex algorithm or interior point method can be used to solve the dual problem, we can take
advantage of the problem structure and solve the dual more efficiently. This is especially important for large
problems (with thousands of variables and constraints) that have to be solved several times before we get
the optimal solution. The procedure we develop for solving the dual problem is based on the following
propositions.

Proposition 1. The primal problem (P) is always feasible and bounded for given y;’s satisfying constraint sets
(3)-(6) and (8).

Proof. The primal problem (P) is derived from model II which is equivalent to model I with given y;’s sat-
isfying constraint sets (3)—(6) and (8). Thus, if model I is feasible and bounded, the primal problem will also
be feasible and bounded.

Model I is formulated to find the minimum cost related to intercell movement and resource under-uti-
lization. It is easy to see that model I is always feasible if the practical constraints are not violated, i.e. con-
straint sets (3)-(6) and (8) are satisfied. This is because each part can be arbitrarily assigned to any part
family and each machine can be randomly assigned to any machine group. In addition, since the cost re-
lated to the part and machine assignments are finite and nonnegative, any feasible solution to model I must
be bounded. Therefore, we can conclude that the primal problem is also feasible and bounded for given y;’s
satisfying constraint sets (3)—(6) and (8). [
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Corollary 1. The dual problem (D) is feasible and bounded and has at least one optimal solution.

Proposition 2. There exists at least one set of optimal variables in the dual such that my, = 0, if y = 1 and
A =0, if yp =1, forall i, j,k.

Proof. From corollary 1, we know the dual has at least one optimal solution. Suppose an optimal variable
set exists with some ;s > 0 when y; = 1 and some #;%s > 0 when y; = 0. Then, another optimal variable
set with 7,3 = 0 when y; = 1 and 7,3 = 0 when y; = 0(Vi, j, k) can be derived as shown below.

From (18) and (19), if an optimal variable set exists with some 7;;.s > 0 when yj; = 0, then we can decrease
the value of 7,4 to 0 and s; by ;% and retain optimality as well as feasibility. Notice that reducing the value of
#1;ixs to 0 in (20) will not violate feasibility, and therefore, the optimal values of /i, m; ;& need not be changed.

In addition, if an optimal variables set exists with some 7,35 > 0 when Vi = 1, it is easy to see from (18),
(19) and (20) that we can reduce the value of ;s to 0, correspondingly increase the value of I; ;jx and then
reduce the value of 5;. Because j, m; y+ and s; have coefficients of 0, —1 and 1 in the objective function, res-
pectively, the dual problem will remain feasible and optimal. Therefore, we can conclude that there exists at
least one set of optimal variables in the dual such that m;3 =0, if yx = 1 and 7,3 = 0, if yi = 1, for all
Lj k. O

Propeosition 3. The optimal solution of the dual problem can be found by inspection.

Proof. From Proposition 2, we know that the dual objective function value is equal to > s;. To make s; as
large as possible, we need to maximize the value of »;; and minimize the value of /i, due to constraint (19).
Algorithm 3 provided below shows how the optimal solution can be obtained by inspection.

Algorithm 3
Step 0. Seti=j=1.
Step 1. Fork=1,2,...,r, let RHSUI,E = u,-jv,-(l - a,-j) — CiV;04;ay;.
RHSy; > 0 and yje = 1, set s =0, s = 0, gy = RHS.
If RHSUk > 0and Vi = 0, set l,Jk =0, m,jk =0, nljk =0.
If RHS; < 0 and yy = 1, set J = —RHSy, i = 0, figze = 0.
If RHS,-jk < 0 and Yik = 0, set l,'jk =0, Mijk = —RHS,'jk, fl,'jk =0.
Step 2. Set j=j+ 1.If j < nm, go to Step 1.
Step 3. Seti=i+1.1fi < np, set j =1 and go to step 1. 3
Step 4. For i= 1, 2, ceeyDs set gi = min{zj(c,-viaijoij) + Zj ﬁijk — Zj l,‘jk,k = 1, 2, ey r}. The optimal
solution of the dual Z is then >, 5;. STOP.

To verify that the dual solution obtained using Algorithm 3 is optimal, we apply the property of strong
duality to find the corresponding primal solution and then show the primal and dual solutions have the
same value as discussed below.

Suppose yj =1 for some j = j* and k = k*. Then based on Algorithm 3, dual constraint (19) corre-
sponding to k = k* can be simplified as s; < v, 2 u;;(1 — a;;)Vi. For all other k, i.e. k # k*, (19) can be sim-
plified as s; < ¢;v; Z a;jo;; Vi. Two conditions arise. Either

U,'Zu,'j(l - tlij) < C,'U,'Za,'jOij or U,'Zu,'j(l - aij) > ciuiZa,-joij.
J J J J
For the first case, using complementary slackness property it can be shown that the corresponding pri-

mal variable xz- = 1 and x; = 0 for all k # &*. Since z;3 = x4y and the value of y;’s is known, the value of
z;% variables and hence the objective function value of the primal can be easily obtained. Furthermore, this
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can be shown to be equal to Z - the objective function value of the dual. Hence, the x; values as determined
above and §;, 7,~jk, ijk, A values as obtained in Algorithm 3 are optimal to the respective problems. It is
easy to show the same holds even for the second case, i.e., v; Y y ui(1 —a) > vy Y . @;joij. Any one k # k*
can be arbitrarily fixed at 1 and the others including x;+ set to 0. Thus, in each case, a feasible solution to
the primal such that x; = 1 for only one k can be obtained. From the structure of the dual problem, we
notice that it is likely to have multiple optimal solutions. However, our interest here is to find one solution
and then use it in the master problem. Algorithm 3 is adequate for this purpose.

3.5. Interesting phenomenon of model 1

In Section 3.3, we showed how the dual problem can be solved without using the simplex method. In this
section, we prove another important result that eliminates a large number of integer restrictions in model I
and thereby makes it extremely efficient.

Remark 1. When y;,s in model I are fixed so constraints (3)—(6) are satisfied, the resulting model will have at
least one optimal solution in which x;’s are integers. Further, such a solution can be found by inspection.

Proof. Observe that model I with fixed y;’s can be rewritten as

minimize Z Z (Z (C,‘U,’Oijaij(l - yjk) -+ uijvi(l —_ aij)yjk))xik (26)
i k J

subject to (2) and (7).

The above is a half assignment problem. It is well known that in any basic feasible solution (including
the optimal one), each constraint will have at most one basic variable. Since the coefficient of each x; is 1 in
constraint (2), the basic variable in each row will take on a value of 1 even in the final solution. Of course,
the remaining variables will take a value of 0. Thus it can be guaranteed that there is at least one optimal
solution for the above model such that x;’s are 0,1 integers. []

To find an optimal solution, we use the following algorithm.

Algorithm 4
Step 0. Seti=1.
Step 1. Since yy is fixed, combine all the terms in (1) and select the smallest coefficient of x4,k = 1,2,...,r.

Set the corresponding x; to 1 and all other x’s to 0. Set i =i + 1.
Step 2. If i < p, go to Step 1. Otherwise STOP.

Remark 2. When y;;’s are fixed so as to satisfy constraints (3)~(6), the solution to model II can be obtained
by inspection.

Proof. Using Algorithm 4, we can determine values of the x; variables. Because the constraints in model 11
satisfy the condition z;% = xiy, the yy’s are known, and model II is equivalent to model I, the value of z;j
is given by the product xyyu. [

4. Numerical example

In this section, an example is provided to show how Benders’ decomposition works for cell formation
problems. The data of the example in Heragu and Kakuturi (1997) are modified for this purpose. This
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example consists of 20 part types and seven machine types. The related costs, alternate routings informa-

tion, and practical constraints are all considered and assumed. The data required are provided below.

1. Part-machine matrix (A) — including the information of part operation requirements, alternate routings,
and number of visits required.

2. Material handling cost matrix (C).

3. Operation time matrix (T) — containing the processing time each part i requires on machine j.

4. Part quantity matrix (V) — indicating number of parts per batch.

5. Machine relations matrix (R)

6. Machine cost matrix (By)

7. Resource under-utilization cost for each part-machine pair (u;) is 0.2.

8. The available budget is 20 units.

9. Available operation time on each machine type j (¢;) is 50 units.

10. The minimum and maximum number of machines in each cell is 0 and 7, respectively.

Machine Number
1 2 3 4 5 6 J_
1 —i-_ * 0 08 02 0 O 1
2 |0 0 0 0 0 1 1 0.5
310 0 0 08 015 0 O 1
4 |1 1 0 1 0 1 0 0.3
5 11 0 0 1 0 0 0 1
6 |0 0 1 0 0 1 1 1
710 1 0 * 0 0 0 1
8 |0 0 0 0 1 1 0 1
A= Part 9 |01 09 1 1 0 0 0 C=|1
No. 10{1 1 0 0 0 0 0 1.2
110 0 0 0 0 1 1! 0.2
12 |0 0 0 0 1 1 0 1
13 10 0 1 0 0 0 1 1
14 10 0 0 0 1 0 0 i
I5]1* 0 0 0 1 1 0 1
16 | 1 0 0 0 1 1 0 1
17 |0 0 0 0 1 1 0 1
18 ({08 02 0 1 0 0 0 1
19 |1 1 0 0 0 0 0 1
2010 0 1 0 0 0 1 1

*Indicates two non-consecutive visits are required on the machines.
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The first row of A matrix indicates that 80% of part 1 follows the routing sequence 1-2-4-2 and 20%
follows 1-2-5-2. It also indicates that part 1 requires two nonconsecutive operations on machine 2. The same
interpretation can be made for all other rows of the A matrix. In machine relations matrix R, an ‘A’ indi-
cates the corresponding two machines have to be grouped in the same cell, an “X’ indicates the two machines
cannot be grouped in the same cell. An ‘O’ indicates there is no special location restriction for the machine
pair. Therefore, for this problem, the R matrix shows that machines 2 and 4 have to be in the same cell;
machines 2 and 3 cannot be in the same cell, and no restriction is applied to all other machine pairs.

To solve this problem, first, the N; formula is used to find the number of units required for each machine
type so as to satisfy capacity constraint. Table 1 shows the total processing time and the number of units
required for each machine.

From Table 1, it can be seen that only one unit of each machine type is required. Also since the total
machine purchase cost —12-4 units is less than available budget 20, the budget constraint is satisfied.
The next step is to solve model II. The maximum number of cells allowed, C, is assigned a value of 4. There-
fore model II consists of 640 real variables and 28 integer variables. After the dual and master problems are
formulated, Algorithms 1 and 2 are used to solve the problem. The error margin e for Algorithm 2 is set as
1. Therefore, the largest possible difference between the solution found by the modified Benders, decompo-
sition algorithm and the optimal solution is 1. The solutions obtained using Algorithms 1 and 2 are id-
entical and equal to 15.54. The solution includes three machine cells and corresponding part families.
The fourth cell is a dummy cell which contains no parts or machines and our initial choice of C, = 4 is jus-
tified. If the solution had four cells, then we would have to increase C, by 1 and resolve model II until the
number of cells in the solution is one less than the value assigned to C,. The optimal solution of this cell
formation problem and the corresponding part-machine matrix are provided below.

Cell 1: Part family #1 Part 1,3,4,5,7,9,10,18,19
Machine group #1 Machine 1,2,4

Cell 2: Part family #2 Part 8,11,12,14,15,16,17
Machine group #2 Machine 5,6

Cell 3: Part family #3 Part 2,6,13,20

Machine group #3 Machine 3,7

Use of Algorithm 2 to solve the cell formation problem: Algorithm 2 is not an optimal algorithm. How-
ever, if the error margin is set to a small enough number, the solution obtained using Algorithm 2 is optimal
(as shown in this example). In fact it can be proved that, for a totally unimodular case (i.e. all coefficients of
the model are either —1, 0, 1), if the error margin is set to a fractional number, the solution obtained using
Algorithm 2 is optimal.

Table 1
Results using N; formula

Machine number j Available operation time 7} Total required processing time Number of units required ~;
22 vty
1 50 45.40 1
2 50 13.68 1
3 50 9.00 1
4 50 18.00 1
5 50 14.10 1
6 50 30.00 1
7 50 12.80 1
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Discussion of maximum number of cells allowed, r: In this example, we assigned maximum number of cells
allowed, » equal to 4 and obtained solution indicating three machine cells and one dummy cell. Therefore
we can conclude that the optimal cell number, »* is equal to 3. For any value of r greater than or equal to 3,
the solution obtained using Algorithm 1 is an optimal solution.

Discussion of multiple machines: To demonstrate our approach of dealing with multiple machines, we
change the available operation time of each machine type from 50 to 42 in the previous example. Now,
from Table 1 we know the total required processing time on machine 1 is 45.4 which is large than 42. Thus
an additional unit of machine 1 is required. In addition, the total machine purchasing cost now is 14.4. It is
still less than available budget 20. Hence, the budget constraint is satisfied.

To deal with multiple machines, the first approach mentioned in Section 2.3 that distributes jobs to ma-
chine type 1 before solving model II is used here. Since we found from previous result that parts 15 and 16
require intercell movements due to machine 1, we assign the additional unit of machine 1 to these two parts.

Machine Number

_l__ 2 4 5 6 3 1
1 |1 1* 08 j02 0 O O
3]0 0 085j015 0 O 0
4 11 1 1 0 1 0 0
5 (|1 0 1 0 0 0o o0
7 |0 1 1* {0 0 ¢ 0
A= Part 9 |01 09 1 0 0 1 0
No. 10 |1 1 0 0 0 o 0
18 108 02 1 0 0 0 0
1911 1 0 0 0 0 0
8 |0 0 0 1 110 0
11 ]0 0 0 0 110 1
12 |0 0 0 1 lb 0 0
1410 0 0 1 0i0 0
151 0 0 1 110 0
16 |1 0 0 1 110 0
1710 0 0 1 110 0
2010 0 0 0 01 1
2 |0 0 0 0 110 1
6 |0 0 0 0 1 ]1 1

13(0 0 0 0 01 1 |

* Indicates two non-consecutive visits are required on the machines.
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Before solving model 11 for this revised problem, we need to ensure the capacities of machine 1 and 1’ are
adequate. The revised total operation time on machine 1 is 40.2 and on machine 1’ is 5 and both are less
than available machine operation time. Thus the capacity constraint is satisfied. To solve model II, the so-
lution procedure described previously for the original example is used. The optimal solution is found equal
to 13.6. The optimal solution of the cell formation problem is provided below.

Cell 1: Part family #1 Part 1,3,4,5,7,9,10,18,19
Machine group #1 Machine 1,2, 4

Cell 2: Part family #2 Part 8,11,12,14,15,16,17
Machine group #2 Machine 1’,5,6

Cell 3: Part family #3 Part 2,6,13,20

Machine group #3 Machine 3,7

5. Computational performance

In this section, the computational performance of Algorithms 1 and 2 is analyzed using four test prob-
lems. OSL software was used on an IBM RISC 6000 machine to solve these problems. The first example is a
test problem with five parts, four machines to illustrate use of Benders’ decomposition for traditional clus-
ter analysis discussed in most papers. The second example is to demonstrate the approach we propose for
solving practical cell formulation problems. The data of the second problem are modified from Heragu and
Kakuturi (1997) and all of the cost and time related values are assumed. The third and fourth examples are
two classical cell formation problems which are widely discussed and adapted from Askin and Chiu (1990)
and Burbidge (1975), respectively. The problem size is different in these examples and the degree of difficul-
ty is in increasing order.

A summary of the results for the four test problems is provided in Table 2. As mentioned previously, the
number of integer variables is a product of machines and cells. From the table we notice that: (1) the CPU
time increases dramatically when the number of integer variables increases; (2) modified Benders’ decom-
position approach can solve the problem much faster than the original algorithm, and (3) increasing the
value of error margin, ¢, can speed up the performance but the solution quality will decrease. Spending
a few hours to solve a cell design problem optimally or near-optimally is considered reasonable because
the cell design problem, unlike the planning problem, is not a routine job that is required to be solved fre-
quently. Our experience with industrial experts shows that designers would rather spend more time to get

Table 2
Summary results of test problems 14

Problem 1  Problem 2 Problem 3 Problem 4
No. of parts 5 20 24 43
No. of m/c types 4 5 14 16
No. of m/cs 4 7 14 21
No. of cells 2 3 3 4
Approach used Alg. 3 Alg. 3 Alg. 4 Alg. 3 Alg. 4 Alg. 4
e value, if applicable - - e=1 - e=1 e =10 e=>5 €=
CPU time 1.ls 5 min 86 s 197 min 10 min 25 min 91 min 631 min
No. of iterations 10 59 60 118 97 102 154 560

Optimality yes yes yes yes yes no yes yes
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an optimal or near optimal solution instead of using heuristic approach to get an inferior solution for an
important system design problem that has ramifications on planning problems.

6. Conclusion

In this paper, a mathematical model was presented to incorporate three critical aspects: (1) resource uti-
lization, (2) alternate routings, and (3) practical constraints while designing CMSs. Unlike most other pa-
pers, our model does not require us to enforce integer restrictions on a key variable set, thereby enabling us
to formulate a mixed-integer problem with much fewer integer variables. The algorithms used to solve the
model were coded using OSL, and optimal results were obtained for all but one example problem.

A cell decomposition approach has been developed to solve even larger problems. The cell decomposi-
tion approach, first, analyzes the part-machine relations; second, it decomposes the original system to sev-
eral subsystems using existing techniques, and then uses the approach discussed in this paper to solve each
subsystem. Details are covered in Chen and Heragu (1995).

References

Adil, G.K., Rajamani, D., Strong, D., 1997. Assignment allocation and simulated annealing algorithms for cell formation. 1IE
Transactions 29 (1), 53-67.

Askin, R.G., Chiu, K.S., 1990. A graph partitioning procedure for machine assignment and cell formation in group technology.
International Journal of Production Research 28 (8), 1555-1572.

Askin, R.G., Subramanian, S.P., 1987. A cost based heuristic for GT configuration. International Journal of Production Research 25,
101-113.

Ballakur, A., Steudel, H.J., 1987. A within cell utilization based heuristic for designing cellular manufacturing systems. International
Journal of Production Research 25 (5), 639-665.

Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238-252.

Burbidge, J.L., 1975. The Introduction of Group Technology, Wiley, New York.

Chan, H.M., Milner, D.A., 1982, Direct clustering algorithm for group formation in cellular manufacturing. Journal of Manufacturing
Systems 1, 64-76.

Chandrasekaran, M.P., Rajagopalan, R., 1986. An ideal seed non-hierarchical clustering algorithm for cellular manufacturing.
International Journal of Production Research 24 (2), 451-464.

Chen, J., Heragu, S.S., 1995. Cellular manufacturing systems design: a cell decomposition approach for solving large scale real world
problems, DSES Technical Report #37-95-437, Rensselaer Polytechnic Institute, Troy, NY 12180.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability, Freeman, San Francisco, CA.

Geoffrion, A.M., Graves, G.W., 1974. Multicommodity distribution system design by Benders decomposition. Management Science 20
(5), 822-844.

Grznar, J., Mehrez, A., Offodile, O.F., 1994. Formulation of the machine cell grouping problem with capacity and material movement
constraints. Journal of Manufacturing Systems 13 (4), 241-260.

Heragu, S.S., 1994. Group technology and cellular manufacturing. IEEE Transactions on Systems, Man, and Cybernetics 24 (2), 203--
215.

Heragu, S.S., Gupta, Y.P., 1994. A heuristic for designing cellular manufacturing facilities. International Journal of Production
Research 32 (1), 125-140.

Heragu, S.S., Kakuturi, S.R., 1997. Grouping and placement of machine cells. IIE Transactions 29(7), 561-571.

Kang, S., Wemmerlov, U., 1993. A work load-oriented heuristic methodology for manufacturing cell formation allowing reallocation
of operations. European Journal of Operational research 69 (3), 292-311.

King, J.R., 1980. Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm.
International Journal of Production Research 18, 213-219.

King, J.R., Nakornchai, V., 1982. Machine-component group formation in group technology: review and extension. International
Journal of Production Research 20 (2), 117-133.

Kumar, C.S., Chandrasekharan, M.P., 1990. Group efficacy: a quantitative criterion for goodness of block diagonal forms of binary
matrices in group technology. International Journal of Production Research 28 (2), 233-243.



192 S.S Heragu, J.-S. Chen | European Journal of Operational Research 107 (1998) 175-192

McAuley, J., 1972. Machine grouping for efficient production. The Production Engineer 51 (2), 53-57.

Offodile, O.F., Mehrez, A., Grznar, J., 1994. Cellular manufacturing: a taxonomic review framework. Journal of Manufacturing
Systems 13 (3), 196--220.

Seifoddini, H., Wolfe, P.M., 1986. Application of the similarity coefficient method in group technology. IIE Transactions 18, 271-277.

Singh, N., 1993. Design of cellular manufacturing systems. European Journal of Operational Research 69 (3), 284-291.

Song, S., Hitomi, K., 1992. GT cell formation for minimizing the intercell parts flow. International Journal of Production Research 30
(12), 2737-2753.

Srinivasan, G., Narendran, T.T., 1991. Graphics - a nonhierarchical clustering algorithm for group technology. International Journal
of Production Research 29, 463-478.

Taha, H.A., 1992. Operations Research: An Introduction, Macmillan, New York.

Vakharia, A.J., 1986. Methods of cell formation in group technology: a framework for evaluation. Journal of Operation Management
6 (3), 257-271. ,

Wemmerlov, U., Hyer, N.L., 1986, Procedures for the part family machine group identification problem in cellular manufacturing.
Journal of Operations Management 6 (2), 125-147.

Wemmerlov, U., Hyer, N.L., 1989. Cellular manufacturing in the U.S. industry: a survey of users. International Journal of Production
Research 27 (9), 1511-1530.



