
Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150

ARTICLE IN PRESS
*Correspondi

E-mail addre

paolo.dellolmo@

(R. Onori).

0736-5845/$ - see

doi:10.1016/j.rci
Minimum makespan task sequencing with multiple shared resources

Massimiliano Caramiaa,*, Paolo Dell’Olmob, Riccardo Onoric

a Istituto per le Applicazioni del Calcolo IAC-CNR ‘‘Mauro Picone’’, Viale del Policlinico, 137 - 00161 Rome, Italy
bDipartimento di Statistica Probabilit "a e Statistiche Applicate, Universit "a di Roma ‘‘La Sapienza’’, Piazzale Aldo Moro, 5 - 00185 Rome, Italy

cDipartimento di Informatica, Sistemi e Produzione, University of Rome ‘‘Tor Vergata’’, Via del Politecnico, 1 - 00133 Rome, Italy
Abstract

In this paper we study the general problem of sequencing multiple jobs, where each job consists of multiple ordered tasks and

tasks execution requires simultaneous usage of several resources. In particular, the case of an automatic assembly cell is examined.

NP-completeness results are given. A heuristic is designed and evaluated.

r 2003 Elsevier Ltd. All rights reserved.

MSC: 68M20; 68Q17; 68Q25; 68W40; 90B35; 90C27

Keywords: Scheduling; Robotic cells; Job shop heuristic algorithm; Complexity analysis
1. Introduction

A substantial amount of recent research has been
directed towards the development of industrial robots.
The bulk of this work has dealt with electromechanical
capabilities, sensing devices and computers controls.
Relatively little research has investigated the operational
problem associated with application of this technology
[1–5]. We investigate one operational problem which is
encountered in applications, in which a robot is used to
tend a number of machines. Such an application would
arise, e.g., when machines have been organized into a
machine cell to implement the concept of group
technology [6–11]. The cell would be used to produce
multiple set of parts at prespecified production rates.
The feasibility of assigning one robot to perform the
tasks necessary for tending all the machines, so that
parts are produced at specified production rates, is an
important operational problem. In fact, the resolution
of this problem determines the number of robots that
might be necessary to tend machines in a manufacturing
system and hence the investment required to robotize
tending activities.
ng author. Fax: +39-06-44-04-306.

sses: caramia@iac.rm.cnr.it (M. Caramia),

uniroma1.it (P. Dell’Olmo), onori@disp.uniroma2.it

front matter r 2003 Elsevier Ltd. All rights reserved.

m.2003.10.003
These kinds of problems were first introduced by
Asfahl [12]. A summary of the related literature can be
found in [13,14]. In particular, in [13] the authors find
the optimal sequence of moves for a two-machine robot-
centred cell producing a single part-type, and solve the
part sequencing problem for a given one-unit robot
move cycle in a two-machine cell producing multiple
part-types. Hall et al. [14] showed that the optimal
solution to the multiple part-types problem in a two-
machine cell is not generally given by a one-unit cycle.
They develop an Oðn4Þ; where n is the number of parts,
time algorithm that jointly optimizes the robot move
cycle and part sequencing problems. The latter algo-
rithm was improved later by Aneja and Kamoun [2]
with one of Oðn log nÞ complexity.
Also, Blazewicz et al. [15] provided a summary

of the related literature and described a line for
machining castings for truck differential assemblies in
the form of a three-machine robotic cell where a robot
has to transfer heavy mechanical parts between large
machines.
Descriptions of interesting applications were pro-

vided, e.g. by Hartley [16]. Complexity issues were
discussed by Wilhelm [17], and Crama and Van De
Klundert [18], that provided a proof that a basic version
of the problem is strongly NP-complete, and described a
polynomial time algorithm for minimizing cycle time
over all one-unit cycles in an m-machine cell producing a
single part-type in a robot-centred cell.

ARTICLE IN PRESS
M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150144
Hall et al. in [4] considered a three-machine cell
producing multiple part-types, and proved that, in two
out of the six potentially optimal robot move cycles for
producing one unit, the recognition version of the part
sequencing problem is unary NP-complete. Moreover,
they have shown that the general part sequencing
problem not restricted to any robot move cycle in a
three-machine cell is still intractable.
Levner et al. [19] addressed a cyclic robot scheduling

problem in an automated manufacturing line in which a
single robot is used to move parts from one workstation
to another, with the goal of optimizing the cycle length.
For this problem they proposed an algorithm of
complexity Oðm3 log mÞ where m is the number of
machines.
Many of the results and algorithms in the literature

are devoted to robotic flow-shop scheduling problems
(e.g., see [12,14,15,20]). However, the robotic cell
configuration is very flexible: the robot can easily access
the machines in any order, thus producing a large
variety of products in the form of a job-shop (e.g., see
[21–24]).
In this paper we concentrate on the latter class of

problems, studying the general problem of sequencing
multiple jobs where each job consists of multiple
ordered tasks and tasks execution requires simultaneous
usage of several resources [25].
The remainder of the paper is organized as follows. In

Section 2 we formally describe the problem. The
complexity of the problem is analyzed in Section 3. A
heuristic algorithm is described in Section 4, and finally
in Section 5 we present computational results.
Fig. 1. An example of LMU problem.
2. Problem definition

Let us consider a cell composed of M machines
configured to produce a batch of parts. Part p; p ¼
1;y;P; requires Np tasks. Let pj denote the jth task for
part p: Task pj takes tpj

time units to complete. We allow
the general condition that a task requires concurrent
usage of more than one cell resource during its
execution. Let Spj

be the set of resources required for
task pj : The objective is to determine the schedule for all
tasks of all parts so as to minimize the makespan. Note
that the mainstream of research in robotic scheduling is
devoted to two classes of production performance
measures. The first is the makespan which addresses
the case of a finite part set where one is interested in
minimizing the maximum completion time of these parts
(e.g., see [23,26–28]). The other class of models (which is
not addressed in this paper) assumes that the part set is
infinite and attempts to minimize the long run cycle time
of the schedule, which is the same as maximizing the
throughput rate (e.g., see [13]).
As an example of this model, we examine an assembly
cell of M � 1 machines plus a material handling robot.
The robot will be modelled as machine M : Each part has
a processing time associated with each machine. In
addition, the robot is needed to load a part on a machine
and then to unload the part after the production task
has been performed. In our model, each production task
is divided into three tasks, namely Load, Make, and
Unload. The Load and Unload tasks require both the
machine and the robot. The Make operation would
normally require only the machine. The formulation
also permits the case where the robot is needed to hold
the part while certain production tasks are performed.
This problem can be easily extended to the case of
multiple material handlers, each assigned to a specific set
of machines. Note that the solution must take into
account precedence restrictions. For instance, we cannot
unload until we have loaded and performed the Make
task.
This is an example of operational problems

associated with the application of industrial
robots, used to tend a number of machines that have
been organized into a machine cell. The cell is used to
produce a set of parts at production rates specified by
managers. The time required to tend a machine,
may be different for each machine according to its
location and orientation in the cell, and to the part to be
processed. All machines in the cell are dependent on a
single robot, so the sequence in which tending tasks are
performed may be critical and force certain machines to
be in idle.
Let us denote the Load, Make and Unload operations

of part p requiring machine i with Li
p; Mi

p; Ui
p (the

machine index i will be omitted when not necessary).
Moreover, we shall refer to the problem of
scheduling Load, Make and Unload operations for the
set of parts in order to minimize makespan as the LMU

problem.
As an example of LMU problem, in Fig. 1 is shown

a schedule, for three parts and two making machines.
In particular, the robot is indicated with R; and the
machines with m1 and m2; respectively. Moreover, the
Make operation for part 2, namely M2

2 ; requires
resource R:

ARTICLE IN PRESS
M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150 145
3. NP-completeness result

We show that LMU problem with general processing
times on four machines is NP-hard by a transformation
from 3-Partition, which is known to be strongly NP-
complete (see [29]), to our problem. The 3-Partition
problem is defined as follows.
3-Partition problem: Given a set A ¼ fa1; a2;y; a3zg

of 3z integers such that
P3z

i¼1 ai ¼ zB and B=4oaioB=2
for i ¼ 1;y; 3z; can A be partitioned into z disjoint
subsets, A1;A2;y;Az; such that

P
aiAAk

ai ¼ B for each
k ¼ 1; 2;y; z?

Theorem 1. The LMU problem with m ¼ 4 is strongly

NP-complete.

Proof. For a given instance of the 3-Partition problem
let us define a corresponding instance of our problem
with 5z parts. Let there be 2z parts requiring machine 1;
z parts requiring machine 2, z parts requiring machine 3,
and z parts requiring machine 4. Recalling the definition
of B in the statement of the 3-Partition problem, let the
processing times be as follows:

* L1
p ¼ 1; M1

p ¼ B; U1
p ¼ 1; p ¼ 1;y; 2z;

* L2
p ¼ ap�2z; M2

p ¼ B � ap�2z þ 2; U2
p ¼ ap�2z; p ¼

2z þ 1;y; 3z;
* L3

p ¼ ap�3z; M3
p ¼ B � ap�3z þ 2; U3

p ¼ ap�3z; p ¼
3z þ 1;y; 4z;

* L4
p ¼ ap�4z; M4

p ¼ B � ap�4z þ 2; U4
p ¼ ap�4z; p ¼

4z þ 1;y; 5z:

If the 3-Partition problem has a positive answer, then
we can construct a schedule of length Y ¼ 2zðB þ 2Þ as
shown in Fig. 2.
Now, we are going to show that there is a positive

answer to 3-Partition if there exists a feasible schedule
with length less than or equal to Y : We observe that the
value of the makespan to schedule in any order the 2z

parts requiring machine 1 is Y ¼ 2zðB þ 2Þ: This partial
schedule has no idle times on machine 1 and has 2z idle
times on the robot all of length B: The total time
required to perform the Load and Unload operations of
the remaining 3z parts is 2zB: Note that a feasible
schedule for the remaining parts can be obtained
Fig. 2. An optimal schedule with Y ¼ 2zðB þ 2Þ:
scheduling in any order the Load operations of parts
on machines 2–4, on an idle time of the robot. The Make
operation can start as soon as the Load is completed.
Unload operations can be performed in the successive
robot idle time in the same order than the corresponding
Load operations. In a schedule of length Y the robot
must have no idle times. This is possible if the sum of the
Load (Unload) operations of parts requiring machines
2–4 in each robot idle time is equal to B; that is if it exists
a 3-Partition of the set A: Thus the problem is strongly
NP-complete. &
4. The heuristic

In the following, we describe a heuristic algorithm
(namely LMUA) which finds a feasible solution to our
scheduling problem.
First, we observe that an active schedule can have idle

times either on one of the machines or on the robot
which cannot be eliminated trivially. The robot can be
idle when all machines are simultaneously processing a
Make task. A machine mi may be idle, waiting for either
a Load or an Unload task to be performed, because the
robot is busy tending another machine. Second, for any
feasible schedule the maximum completion time is the
completion time of the last Unload operation.
The LMUA algorithm proposed is a single pass

heuristic in which the loading–unloading sequence and
the corresponding schedule are determined once. A list
containing the sequence of Load–Make–Unload tasks is
built considering any order of the part types. At the
beginning the robot R loads all machines. Make
operations can start immediately after the preceding
Load is performed. Successively the robot unloads the
machine which ended first the Make task.
In the generic stage of the algorithm the first

unselected task in the list is examined. If it is a Make
operation it can be scheduled immediately after the
loading. Otherwise, the first Load–Unload operation in
the list of remaining tasks which tends the machine
which has been idle for the longest time is selected. The
following is a pseudo-code description of algorithm
LMUA:

Algorithm LMUA. Step 1: Consider an instance with

M � 1 machines, one robot (modelled as machine

M) and Z parts.
1.1.
 Take any ordering of all the parts (assume the

order 1;y;Z);
1.2.
 Build the list of tasks:

LT ¼ fLk
1 ;M

k
1 ;U

k
1 ;L

k
2 ;M

k
2 ;y;Lk

Z;M
k
Z;U

k
Zg;
1.3.
 Build the list of tasks Make that require the

resource robot: LTR ¼ fMk
i j part i requires

the robot during the Make on mkg;

ARTICLE IN PRESS
M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150146
1.4.
 Build the list of processing times:

PT ¼ fpLk
1
; pMk

1
; pUk

1
;y; pUk

Z
g;
1.5.
 Build the list of the instants of time at

which the machines are available:

AT ¼ fAt1;At2;y;AtMg;

1.6.
 Initialize the current scheduling time at

t ¼ 0;

1.7.
 Initialize the list of the tasks that can be

processed at the current t with all the Load

tasks: LTA ¼ fLk
1 ;L

k
2 ;y;Lk

Zg;

1.8.
 Build the list reporting the instants of time

at which the tasks in list LT could start

their execution: FTA ¼ fFtMk
1
;FtUk

1
;y;FtUk

Z
g;
1.9.
 Set the values of the variables in FTA equal

to infinite.
Step 2: While LTa| or LTAa| do:
2.1.
 Scan tasks in list LTA and
2.1.1.
 if there exists a task Make that at time

t requires a machine mk that is avail-

able according to list AT then go to

Step 3; otherwise
2.1.2.
 if the robot is available at time t

and there exists either a task Load

whose corresponding Make operation

requires a machine which is available,

or a task Unload, then go to Step 4

(tie breaks choosing the Load or

Unload task waiting for more time in

the list).
2.2.
 If there does not exist a task obeying Step

2.1.2 or Step 2.1.3, then:
2.2.1.
 Increase t ¼ t þ 1;

2.2.2.
 Update lists LTA and LT ; by moving

tasks from LT to LTA according to FTA:
Step 3:
3.1.
 Schedule the Make task selected starting from

t on the required machine;
3.2.
 Set equal to infinite the variable in AT

associated with the machine handling the Make

task.
3.3.
 Update in FTA the earlier starting time of

the Unload task associated with the processed

Make task, setting it to the finishing time of

the latter;
3.4.
 Delete from LTA the processed Make task.
3.5.
 Set t ¼ t þ 1;

3.6.
 Go to Step 2.
Step 4: If the selected task is a Load (whose Make

task does not require the robot) or an Unload,

then:
Fig. 3. An application of LMUA algorithm.
4.1.
 Process the task;
4.2.
 Update the instant of time AtM at which the

robot will be available again according to

the processing time of the task executed; set

t to this latter value.
4.3.
 If a Load task has been selected, then update

in FTA the earlier starting time of the Make

task associated;
4.4.
 If an Unload task has been selected, set to

t þ 1 the time at which the machine which have

processed its predecessor Make task will be

available; update the instant of time AtM at

which the robot will be available again

according to the processing time of the task

executed; update t accordingly.
4.5.
 Delete from LTA the processed task;
4.6.
 Go to Step 2.
If the selected task is a Load task such that the

following Make task requires the presence of the

robot (as shown in list LTR), then:
4.7.
 Process the task Load and immediately after

the following task Make;
4.8.
 Update the variable in list AT indicating

when the robot will be available again

(i.e., after an interval of time equal to

the sum of the processing times of the

Load and the Make operations), while set

the availability of the machine which has

processed the Make task equal to infinity

after this Make operation has been per-

formed;
4.9.
 Update the variable in list FAT of the

earlier starting time of the corresponding

Unload task, i.e., t plus the processing

times of the Load and the Make operations

performed, say pLk
i
and pMk

i
, respectively;
4.10.
 Update t ¼ t þ pLk
i
þ pMk

i
;

4.11.
 Delete from LTA the Load task;
4.12.
 Delete from LT the Make operation.
4.13.
 Go to Step 2.
Step 5: Return the makespan: Cmax :¼ t

In Fig. 3 we show an application of LMUA algorithm
with four parts: Make operations for parts 1 and 3
require machine m2; Make operations for parts 2 and 4

ARTICLE IN PRESS
M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150 147
require machine m1; moreover, Make operation for
part 2, namely M1

2 ; also requires resource R:
In order to determine the computational complexity

of the LMUA algorithm, note that, for a given instance
of Z parts, there are 3Z tasks and:

Step 1: the lists can be constructed in OðZÞ;
Step 2: the cycle while is repeated at most 3Z times,

and the task selection requires at most 3Z comparisons;
Step 3: runs in Oð1Þ;
Step 4: can be processed in Oð1Þ;
Step 5: runs in Oð1Þ;
Hence, for a given instance of the LMU problem,

denoting with Z the size of the input, LMUA algorithm
has a worst case complexity OðZ2Þ:
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

10 20 30 40 50 60 70 80

Jobs

C
m

ax

m = 4

m= 6

m = 8

m = 10

Fig. 4. Trends of the makespan as the number n of jobs increases.

4,000
5,000
6,000
7,000
8,000

9,000
10,000
11,000
12,000
13,000

4 6 8 10
Machines

C
m

ax

n = 50

n = 60

n = 70

n = 80

Fig. 5. Trends of the makespan as the number m of machines

increases.
5. Computational results

In this section we present some computational
experiments with LMUA algorithm on randomly
generated problems. We considered several cell config-
urations with mA½4; 10
 machines and one robot tending
all the machines. For each configuration we considered
an increasing number of jobs nA½10; 80
: Note that, for
instance, 80 jobs correspond to 240 tasks. Processing
times for each loading and unloading operations are
generated randomly, using a uniform distribution in the
range [20–70] time units. Processing times of Make
operations are generated randomly using a uniform
distribution in the range [120–360] time units. We
considered different scenarios associated with a prob-
ability pr that a generic part requires the robot
during the Make operation equal to 0; 0:1; 0:2; 0.3,
and 0.4. The algorithm implementation was done in
WINDOWS/C environment on a AMD Athlon PC
running at 900 MHz:
Results are summarized in the following tables, which

reports, for each cell configuration, the values of the
makespan depending on the number n of jobs. Each
table is associated with a scenario corresponding to a
probability pr:
First, let us consider a scenario in which jobs

do not require the resource robot during the Make
operation (Table 1). Observe that, for a given m;
the makespan increases as n increases, while it
decreases, for a given n; as the number of machines m
Table 1

Scenario with pr ¼ 0

pr ¼ 0 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40

4 1977.9 3265.5 4655.9 6774.6

6 1681.8 2733.4 4157.2 5460.4

8 1460 2712.1 3784.2 5400.4

10 1438.1 2678.2 3723.2 5314.5
increases. To evaluate the behaviour of the makespan
we report the chart in Fig. 4.
The makespan value, given a fixed number m of

machines, seems to be linearly dependent on the number
of jobs. For a certain range of the number of jobs
ðnA½10; 30
Þ; the trends are very similar, and it seems that
the number m of machines does not affect Cmax: As n

increases, instead, the trends are well distinguished, and
the difference between the makespan values is much
more observable when m passes from 4 to 6, than when
it passes from 6 to 8 or 10.
Now we analyze the behaviour of the makespan

referring to the increase of the number m of the
machines, for a given n: Fig. 5 shows how Cmax

decreases proportionally as the number m increases.
Moreover, from Table 1 it is easy to see that when the
number of jobs passes from n ¼ 30 to 40 the variation of
the associated makespan values is higher than in the
other cases.
50 60 70 80

8110.6 9300.4 10711.1 12077.3

6673.2 8117.8 9633.8 11220.8

6660 8014 9054.3 10482

6638.7 7754.5 8698.9 10458.3

ARTICLE IN PRESS

Table 2

Scenario with pr ¼ 0:1

pr ¼ 0:1 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40 50 60 70 80

4 2069.9 3486.6 5118.2 7300 8923.4 9999.7 11690.6 13615.2

6 1747.8 3096.8 4536 6292.1 7830.5 9298.7 11094.8 13057.5

8 1534.3 3077.5 4487 6193.8 7510.2 8952.5 10382.5 12008.9

10 1506.4 2969.3 4322 6125.6 7503.8 8771.4 10138.7 11849.9

Table 3

Scenario with pr ¼ 0:2

pr ¼ 0:2 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40 50 60 70 80

4 2152.5 3674.4 5320.9 7808.6 9428.6 10962.4 12574.6 14435.3

6 1818.3 3458.4 5143.6 7109.3 8806.4 10647.6 12018.1 14319

8 1775.3 3373.7 4954 6761.6 8430.1 10336.6 11880 13752

10 1591.9 3367.3 4919.1 6651.7 8283.1 9914.6 11270.6 13356.7

Table 4

Scenario with pr ¼ 0:3

pr ¼ 0:3 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40 50 60 70 80

4 2301.7 3743.1 5611.7 8289 10223 11656.9 13882.7 15894.9

6 1929.2 3644.8 5462.2 7798.4 9358.6 11496.9 13212 15787.6

8 1821 3465.1 5440.8 7341.7 9207.9 10969.7 12786.3 15046.8

10 1760.1 3412.8 5092 7252.4 9048.8 10923.3 12089.6 14451

Table 5

Scenario with pr ¼ 0:4

pr ¼ 0:4 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40 50 60 70 80

4 2383 4134 6073.6 9009.7 10859.4 12837.6 14857.8 17176.5

6 2024.3 3960.9 5876.7 8243.3 10232.2 12491.2 14268.5 16624.1

8 1837.3 3671.6 5734.9 7969.9 9644.2 11775 13719.8 15950.3

10 1815.5 3603.2 5406.4 7700.9 9577.2 11424.9 13693.4 15296

M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150148
Finally, we study what happens if the probability
pr that a job requires the robot during the Make
operation is greater than zero. Tables 2–5 summarize
such results.
Note that as pr increases Cmax decreases proportion-

ally. The chart in Fig. 6 shows that the makespan values
increase proportionally with the probability pr and the
number of jobs n:
The chart in Fig. 7, instead, shows that the variation

of the makespan, when the probability pr increases, is
not proportional to the number m of machines, for a
given n: In fact, it can be seen how the influence of pr on
the makespan tends to decrease as m increases.
Note that the maximum CPU time (in seconds) spent
by the algorithm was 2:67; found for the combination
ðpr ¼ 0:4;m ¼ 6; n ¼ 80Þ; whereas the average running
time was 0:38:
A final analysis is devoted to the possible efficiency

improvement of the robotic cell. In particular, we
examine whether is more profitable to reduce the
processing times of Make operations, improving the
machines efficiency, or to reduce the processing times
for loading and unloading operations, modifying the
robot configuration.
First we analyze, in the case pr ¼ 0; what happens if

the range of the uniform distribution for the processing

ARTICLE IN PRESS

4,000

5,000

6,000

7,000

8,000

9,000

10,000

4 6 8 10

Machines

C
m

ax

pr = 0

pr = 0.1

pr = 0.2

pr = 0.3

pr = 0.4

Fig. 7. Makespan values, for a given n; as m and pr increase.

Table 6

Reducing processing times of Make operations

pr ¼ 0 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40

4 1600.1 2781.3 3831.6 5735.

6 1412.1 2481 3707.8 5022.

8 1263.9 2409.8 3585.1 4948.

10 1210.7 2392.1 3459.2 4918.

Table 7

Percentage reduction of Cmax

pr ¼ 0 ’ Jobs ðnÞ -

Mac. ðmÞ 10 (%) 20 (%) 30 (%) 40 (%

4 19.10 14.83 17.70 15.34

6 16.04 9.23 10.81 8.02

8 13.43 11.15 5.26 8.37

10 15.81 10.68 7.09 7.45

Table 8

Reducing processing times of Load and Unload operations

pr ¼ 0 ’ Jobs ðnÞ -

Mac. ðmÞ 10 20 30 40

4 1833.9 3071.5 4312.1 6273.3

6 1567.7 2400.4 3607.3 4847.7

8 1334.5 2398.5 3264.2 4475.5

10 1301.5 2378.7 3138.8 4298.5

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10 20 30 40 50 60 70 80

Jobs

C
m

ax

pr = 0

pr = 0.1

pr = 0.2

pr = 0.3

pr = 0.4

Fig. 6. Makespan values, for a given m; as n and pr increase.

M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150 149
times of Make operations is decreased of 30%; i.e., from
½120� 360
 to [120–268] time units. Table 6 summarizes
the results obtained in this new scenario, and Table 7
reports the percentage of reduction of Cmax:
Now we analyze what happens if the range of the

uniform distribution for the processing times of Load
and Unload operations is decreased of 30%; i.e., from
[20–70] to [20–55] time units. Table 8 summarizes the
results obtained in this case, and Table 9 reports the
percentage of reduction of Cmax:
It is easy to observe that a decrease of the processing

times in both cases brings a reduction of Cmax even if the
latter is not proportional to the former. In fact, the
maximum reduction obtained is 19.89% when proces-
sing times of loading and unloading operations are
decreased, and 19.10% when processing times of Make
operations are decreased instead.
6. Conclusions

We studied the general problem of sequencing multi-
ple jobs where each job consists of multiple ordered
50 60 70 80

3 6806.3 7877.1 8862.9 10284.7

4 6300.3 7630 8586.4 10150

5 6274.4 7480 8405.4 9343.2

7 6256.2 7290.3 8082.4 9900.3

) 50 (%) 60 (%) 70 (%) 80 (%)

16.08 15.30 17.25 14.84

5.59 6.01 10.87 9.54

5.79 6.66 7.17 10.86

5.76 5.99 7.09 5.34

50 60 70 80

7639.3 8816.5 10015.8 11228.9

5467.2 6682 7717.9 9035.2

5458.9 6653.9 7527.2 8697.5

5429.5 6354 7097.6 8415.5

ARTICLE IN PRESS

Table 9

Percentage reduction of Cmax

pr ¼ 0 ’ Jobs ðnÞ -

Mac. ðmÞ 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%) 70 (%) 80 (%)

4 7.28 5.94 7.38 7.40 5.81 5.20 6.49 7.02

6 6.78 12.18 13.23 11.22 18.07 17.69 19.89 19.48

8 8.60 11.56 13.74 17.13 18.03 16.97 16.87 17.02

10 9.50 11.18 15.70 19.12 18.21 18.06 18.41 19.53

M. Caramia et al. / Robotics and Computer-Integrated Manufacturing 20 (2004) 143–150150
tasks and tasks execution requires simultaneous usage of
several resources. The case of an automatic assembly cell
is examined. The NP-completeness in the strong sense of
the problem is proved for an automatic assembly cell
with four machines. A heuristic algorithm is proposed.
For this we give computational results for an assembly
cell with different number of machines and one robot.
The procedure at each iteration selects a task, based on
the partial schedule obtained for the parts that had
already been loaded for the assembly process. That
characteristic of the proposed algorithm indicates that
the presented approach can also be applied in on-line
scenarios as well as in dynamic scheduling environment.
Further research will be devoted to the extension of

this approach to different cell configuration, such as the
case in which a task requires k additional resources out
of a set of m available ones.
References

[1] Agnetis A, Pacciarelli D. Part sequencing in three-machine

no-wait robotic cells. Oper Res Lett 2000;27:185–92.

[2] Aneja YP, Kamoun H. Scheduling of parts and robot activities in

a two-machine robotic cell. Comput Oper Res 1999;26(4):

297–312.

[3] Brauner N, Finke G. Optimal moves of the material handling

system in a robotic cell. Int J Prod Econom 2001;74:269–77.

[4] Hall NG, Kamoun H, Sriskandarajah C. Scheduling in robotic

cells: complexity and steady state analysis. Eur J Oper Res

1998;109:43–65.

[5] Kats V, Levit VE, Levner E. An improved algorithm for cyclic

flowshop scheduling in a robotic cell. Eur J Oper Res

1997;97:500–8.

[6] Agnetis A. Scheduling no-wait robotic cells with two and three

machines. Eur J Oper Res 2000;123(2):303–14.

[7] Agnetis A, Arbib C, Lucertini M, Nicol "o F. Part routing in

flexible assembly systems. IEEE Trans Robotics Automation

1990;6(6):697–705.

[8] Agnetis A, Lucertini M, Nicol "o F. Flow management in flexible

manufacturing cells with pipeline operations. Manage Sci

1993;39(3):294–306.

[9] Agnetis A, Macchiaroli R. Modelling and optimization of the

assembly process in a flexible cell for aircraft panel manufactur-

ing. Int J Prod Res 1998;36(3):815–30.

[10] Askin RG, Standridge CR. Modelling and analysis of manufac-

turing systems. New York: Wiley; 1993.

[11] Van De Klundert J. Scheduling problem in automated manu-

facturing. Dissertation no. 96–35, Faculty of Economics and
Business Administration, University of Limburg, Maastricht,

1996.

[12] Asfahl CR. Robots and manufacturing automation. New York:

Wiley; 1985.

[13] Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W.

Sequencing of parts and robot moves in a robotic cell. Int

J Flexible Manuf Systems 1992;4:331–58.

[14] Hall NG, Kamoun H, Sriskandarajah C. Scheduling in robotic

cells: classification, two and three machine cells. Oper Res

1997;45(3):421–39.

[15] Blazewicz J, Kubiak W, Sethi SP, Sorger G, Srikandarajah C.

Sequencing of parts and robot moves in a robotic cell. Int

J Flexible Manuf Systems 1992;4:331–58.

[16] Hartley J. Robots at work. Amsterdam: North-Holland; 1983.

[17] Wilhelm WE. Complexity of sequencing tasks in assembly cells

attended by one or two robots. Naval Res Logist 1987;34:

3447–63.

[18] Crama Y, Van De Klundert J. Robotic flowshop scheduling

is strongly NP-complete. In: Klein Haneveld WK,

Vrieze OJ, Kallenberg LCM, editors. Ten Years

LNMB. Amsterdam, The Netherlands: CWI Tract 122; 1997.

p. 277–86.

[19] Levner E, Kats V, Levit VE. An improved algorithm for cyclic

flowshop scheduling in a robotic cell. Eur J Oper Res

1997;97:500–8.

[20] Crama Y, Van De Klundert J. Cyclic scheduling of identical parts

in a robotic cell. Oper Res 1997;45:952–65.

[21] Glass CA, Shafransky YM, Strusevich VA. Scheduling for

parallel dedicated machines with a single server. Naval Res

Logist 2000;47:304–28.

[22] Hall NG, Potts CN, Sriskandarajah C. Parallel machine schedul-

ing with a common server. Discrete Appl Math 2000;102(3):

223–43.

[23] Hertz A, Mottet Y, Rochat Y. On a scheduling problem in a

robotized analytical system. Discrete Appl Math 1996;65:

285–318.

[24] Jeng WD, Lin JT, Wen UP. Algorithms for sequencing robot

activities in a robot-centred parallel-processor workcell. Comput

Oper Res 1993;20(2):185–97.

[25] Baker KR. Introduction to sequencing and scheduling.

New York: Wiley; 1976.

[26] Chu C, Proth JM. Single machine scheduling with chain

structures procedence constraints and separation time windows.

IEEE Trans Robotics Automation 1996;12(6):835–44.

[27] Kise H. On an automated two-machines flowshop scheduling

problem with infinite buffer. J Oper Res Soc Jpn 1991;34(3):

354–61.

[28] Kise H, Shioyama T, Ibaraki T. Automated two-machines

flowshop scheduling: a solvable case. IIE Trans 1991;23(1):

10–6.

[29] Garey MR, Johnson DS. Computers and intractability: a guide to

the theory of NP-completeness. San Francisco: W.H. Freeman;

1979.

	Minimum makespan task sequencing with multiple shared resources
	Introduction
	Problem definition
	NP-completeness result
	The heuristic
	Computational results
	Conclusions
	References

