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This paper is concerned with the application of the technique of genetic algorithms to 
solve the problem of optimal facilities’ layout in manufacturing systems design. A mathe- 
matical model is developed to examine the machines’ layout and the pattern of material 
flow for the typical job shop and flow shop manufacturing environments. The analysis also 
considers various practical aspects, such as the constraints of restricted areas and 
reserved machinery locations, and also the irregularity of the shapes of manufacturing 
plants, etc. A genetic approach is developed to provide the optimal solution to the facili- 
ties’ layout problem. The effectiveness of the proposed approach is evaluated with 
numerical examples. Indeed, the results indicate that the proposed approach provides an 
effective means to solve problems in facilities’ layout. 0 1998 Elsevier Science Ltd. All 
rights reserved 
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Introduction 

The facility layout design has been regarded as the 
key to improve plant productivity. Its objective is to 
obtain the most effective machine arrangement, so 
that the material handling costs are minimized. 
Indeed, an effective facility layout can reduce signifi- 
cantly the manufacturing lead timelm3. However, the 
facility layout problem belongs to the class of non- 
polynomial hard (NP-hard) problems which are 
unsolvable in polynomial time4. It suggests that the 
problem’s complexity increases exponentially with the 
number of machinery locations. For instance, a 
system consisting of It4 machines and N machinery 
locations (iV>M) will comprise a solution space with 
the size N. When N is large, it is difficult, if not 
impossible, to produce the optimal solution within a 
reasonable time, even with the support of a powerful 
compute?. 

In the past, the facility layout problem was formu- 
lated as a quadratic assignment problem6. Since then, 
a number of attempts have been published to solve 
the problem by using various techniques’, including 
the tree search algorithm’, and the binary mixed 
integer programming techniqueg. However, such 
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approaches still require a substantial amount of 
computational effort when the problem size is large. 
In recent years, the Group Technology (GT) that 
exploits the similarities in product processing has 
been proposed as an innovative approach to solve the 
problem. In order to simplify the material flow 
patterns, numerous grouping techniques have been 
developed to configure the layout of machines. In 
addition, various clustering heuristics are proposed’“, 
and the unit-valued entries of the part-machine 
incidence matrix are grouped into blocks along the 
matrix’s diagonal. Another methodology involves the 
grouping of machines progressively, drawing refer- 
ence from the similarity coefficients that was first 
proposed by McAuley”, and later improved by a 
number of researchers, such as Seifoddini and 
Wolfe”. In addition, a machine chain similarity 
coefficient was recently proposed by Kazerooni et 
a1.13, so as to accommodate both the direct and 
indirect relationships among machines simultane- 
ously. The network decomposition heuristic and 
mathematical programming are also frequently used 
to solve the problem’4,‘5. However, these methods 
usually over-simplify the problem to such an extent 
that the resulting solution becomes unrealistic. Most 
grouping methods do not solve the facility layout 
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problem directly. In fact, these methods generally 
assume that the problem can be solved easily once 
the machine groups have been established. In fact, 
the whole problem is decomposed into a number of 
sub-problems, which are easier to solve. However, a 
significant body of literature on facility layout16”’ has 
pointed out the importance of machine arrangement 
to achieve line flows and to reduce materials handling 
costs. An effective facility layout has a definitely 
significant impact on traffic congestion and material 
flow patterns. Although the facility layout problem 
can be solved after the establishment of machine 
groups, the original scope of the problem is inevitably 
limited by this approach. 

The present research aims at developing a general 
methodology to determine the optimal layout of 
machines by simplifying the material flow within a 
manufacturing plant. A mathematical model is intro- 
duced to study the layout of machines and the 
pattern of material flow for the typical job shop and 
flow shop manufacturing environments. In addition, 
the analysis also considers the capacities of the 
different manufacturing resources, the constraints of 
restricted areas and reserved machinery locations, the 
irregularity of the shape of manufacturing plants, and 
so on. An approach derived from genetic 
algorithms’s~‘9 is developed to provide the optimal 
solution to the facility layout problem. Unlike some 
of the existing genetic approaches20%2’, the proposed 
approach determines the optimal facility layout 
without initial involvement of the clustering of 
machines and parts. The effectiveness of the 
proposed approach is evaluated by using benchmark 
problems excerpted from Chan and Tansri22, and 
Kazerooni et a1.20. Indeed, the theoretical results so 
obtained show that the proposed approach provides 
an effective means to solve facility layout problems. 

Mathematical model 

Facility layout design is the study of the assignment 
of M machines to N machinery locations (N>M) in a 
manufacturing plant. During the manufacturing 
process, materials flow from one machine to the next 
appropriate machines, until all the processes are 
completed. The objective of solving the facility layout 
problem is therefore to minimize the total material 
handling cost of the system. Indeed, the following 
aspects of the manufacturing system are considered: 

(a) 

(b) 

cc> 

Plant configuration layout, including information 
of the restricted areas and the reserved 
machinery locations. In addition, the plant 
configuration layout can be irregular in shape. 
Cost table that qualifies the distance based 
material handling costs between a pair of 
machines. 
Part-wise production data, which provides infor- 
mation about production volumes, production 

routings, and the unit processing time for each 
manufacturing operation of the part type i 
(i = 1,2,. . . ,I) during the planning period. 

The following notations are used in the develop- 
ment of the mathematical model: 

F m,m* 

Z 

L(m) 

M 

N 

Q, 

S 

tim 

V, 

unit material handling cost between machines 
m, and m, (mI,m2 = 1,2,. . .,M and m, #m,) 

per unit distance 
rectangular distance between machinery 
locations n, and it* (n1,n2 = 1,2 ,..., N and 

n1+2> 
effective manufacturing time (capacity) of 
machine type m (m = 1,2,. . . , S) 
amount of material flow among machines m, 

and m2 (m,, m2 = 1,2,. . . ,M and m, #m2) 

number of part types manufactured by the 
manufacturing plant 
machinery location, where machine m 

(m = 1,2,. . . ,M) is assigned to 
total number of machines contained in the 
manufacturing system 
number of machinery locations contained in 
the plant configuration layout 
number of type m machines (m = 1,2,. . . ,S) 
required in the manufacturing system 
number of machine types 
unit processing time for part type i 
r =i;“; ..,I) on machine type m 

m , ,...,s> 
production volume of part type i 
(i = 1,2,..., Z) demanded during the planning 
period 

The demand of the parts are assumed to be known 
and fixed during the planning period. In order to 
prevent any shortage of parts, the production capacity 
must be sufficiently large. Hence, the minimum 
number of machines Qm required in the manufac- 
turing system is calculated as follows: 

Qm= iiI vitinz/E,n (m =l,&...,S) I 1 (1) 
where [Xi is an integer which is just greater than the 
real number X. 

In some cases, when rectangular distances are 
more appropriate than straight-line distances to be 
used in industrial settings23, the cost function is 
defined as: 

Total cost = 4 = m, = * j, Fmlm*CmlmPL(m1Mm2~ 5 

(mI#m2) (2) 

The objective is to obtain an optimal facility layout 
plan for the machines by minimizing the total 
material handling cost incurred in the system. 
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Genetic algorithms 

When introduced initially by Holland”, the genetic 
algorithm is a stochastic global search technique. It 
can explore the solution space intelligently by using 
the concept taken from the natural genetics and 
evolution theory”. Indeed, the genetic algorithm has 
been demonstrated to be robust and effective in 
various task domains, both theoretically and empiri- 
cally, and even in the presence of non-linearity, multi- 
modality, noise, etc., in the model describing the 
problemz4. In the search process, candidate solutions 
in the solution space are encoded in the form of 
symbolic strings known as chromosomes. The simula- 
tion of genetic evolutionary processes is conducted in 
a pool of chromosomes. This pool is known as the 
population, and the number of chromosomes 
contained within the population is called the popula- 
tion size, P. The simulation of genetic evolutionary 
processes is performed on an iterative basis. The 
search algorithm extracts and analyses the topological 
information of the searched space, and can therefore 
guide the search to advance along a promising direc- 
tion. Each iteration of the search process is called a 
generation. Indeed, the outline of the genetic search 
process used in this paper is summarized as follows: 

Step 1. Generate an initial population of chromo- 
somes randomly with a population size of P. 

Step 2. Decode all chromosomes and evaluate the 
objective function values of their corresponding 
candidate solutions. 

Step 3. Determine the fitness values of the chromo- 
somes by using the objective function values so 
obtained. 

Step 4. Remove the worst LPx RI chromosomes in 
accordance with their fitness values, and replace 
them by duplicating and inserting the best LP x RI 
chromosomes into the current population. LX] is an 
integer which is just smaller than the real number 
X, and R is the percentage of replication of the 
well-performed chromosomes in the current 
generation. 

Step 5. Apply the selection operator to select P 
chromosomes from the current population. The 
selected chromosomes are placed in a mating pool 
as parent chromosomes. 

Step 6. Choose a pair of parent chromosomes from 
the mating pool without replacement. The cross- 
over and mutation operators are then applied to 
produce a pair of new chromosomes. 

Step 7. Insert the new chromosomes into a new 
population. If the population is not full, go to Step 
6. 

Step 8. Check the pre-specified automatic stopping 
criterion. If the stopping criterion is reached, the 
search process stops. The overall best chromosome 
will be selected and decoded. The corresponding 
candidate solution will be chosen as the final 
solution. Otherwise, proceed to the next generation 

I I 1 

Figure 1 An example of a plant configuration layout. 

with the current population replaced by the new 
one, and go to Step 2. 

String representation 

In order to apply the technique of genetic algorithms 
to solve facility layout problems, a string representa- 
tion scheme is required to encode the candidate 
solutions in the solution space in the form of 
symbolic strings, called chromosomes. In this paper, 
the entire manufacturing plant is divided into N grids 
(say II, x n,), and each grid represents a machinery 
location. The entire facility layout plan can thus be 
encoded as a chromosome by using a n, x n, matrix. 
This string representation scheme can be conveni- 
ently illustrated by using a simple example. Figure 1 
shows a plant containing 10 grids, with two of the 
grids labeled by a symbol ‘*’ and a number ‘5’. A 
location assigned with a symbol ‘*’ represents a 
restricted area where no machine is allowed to be 
located, whilst a location assigned with a number 
represents a reserved machinery location where only 
the specified machine is allowed to be placed. If there 
are seven machines in the manufacturing system, one 
of the possible facility layout plans is shown in Figure 
2. This plan can be encoded as a chromosome, S, by 
using a 4 x 3 matrix as shown below: 

r 7 6 -11 

I I21 

Figure 2 A particular facility layout plan. 
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Table 1 Part list and production data 

Pl P2 P3 

Production routing l-3-5 or l-4-5 2-3-6 or 2-3-7 or 2-4-6 or 2-4-7 5-6 or 5-7 
Unit Time op. proc. (min.) 6-2-5 5-8-5 2-4 
Production volume 20 10 10 

where -1 and 0 represent a restricted area and a 
dummy machine respectively. 

Fitness function 

As mentioned previously, the objective of solving a 
facility layout problem is to obtain an optimal facility 
layout plan by minimizing the total material handling 
cost (eqn (2)) incurred in the system. The material 
handling cost, however, does not depend solely on 
the facility layout plan. The cost is also determined by 
the type of machine loading policy to be used. Some 
machine loading policies commonly practised in 
industry include the First-Come-First-Serve (FCFS), 
the Shortest Processing Time First (SPTF), and the 
Longest Processing Time First (LPTF), etc. Never- 
theless, the management usually establishes its own 
favourite machine loading policy in accordance with 
the manufacturing nature of the parts. In general, 
parts are manufactured by undergoing a series of 
machinery operations based on their production 
routings. A list of machinery operations is established 
for each type of machine to record its loading details. 
This includes the information of the part types that 
are going to be manufactured, such as their produc- 
tion volumes, and their unit processing times, etc. 
When there is more than one machine (e.g., 

m1, m2, . . .mQ,,, ) for a machine of type m (where 
m = 1,2, . . . , S), the application of an FCFS policy 
means that the allocation of the machining opera- 
tions of a part to machines begins from the first 
machining operation, i.e., from the top of the 
machining operation list, to the last machining opera- 
tion at the bottom of the list. It should be noted, 
however, that whenever a machine is fully loaded 
during the allocation process, the remaining 
machining operations will be allocated to the next 
available machine, until all the listed machinery 
operations are successfully allocated. On the other 
hand, an SPTF policy means that the allocation of 
the machining operations of a part to machines 
depends on the processing times required. The 
machining operation with the shortest processing 
time is allocated first, and then followed by the 
machining operation with the next shortest processing 
time, with the rest following suit, until all machining 
operations in the list are allocated. The LPTF policy, 
however, works in the opposite way, where the 
machining operation with the longest processing time 
is given the highest priority to be allocated during the 
allocation process. The machining operation with the 
next longest processing time follows next, and so on, 
until all the machining operations are allocated. 

A simple example is used to illustrate how different 
machine loading policies affect the material handling 
cost of a facility layout plan. In this example, there 
are seven machines in the manufacturing system, 
where the machines listed in each of the following 
brackets belong to the same machine type: (3, 4) and 
(6, 7). Figure 2 presents the machine’s location in the 
facility layout plan. Table 1 shows a part list 
containing the information of the part types, their 
production routings, the operation processing time, 
and the production volumes. Table 2 shows a cost 
table containing the information of unit material 
handling cost and the effective capacity of each 
machine type. The machine loading plans derived 
from the different machine loading policies are 
summarized in Table 3. Table 3 also presents the slight 
variations among the different machine loading plans. 
As a result, the material flow patterns under the 
policies of FCFS, SPTF, and LPTF are also different, 
and their corresponding total material handling costs 
(eqn (2)) are equal to $520, $524, and $500 respec- 
tively. The LPTF policy leads to the minimum 
material handling cost. 

The total material handling cost of a candidate 
solution is then converted to the fitness value of its 
corresponding chromosome. In this paper, the fitness 
value of a chromosome is determined by using the 
following equation: 

Fitness = @ = l/4 (3) 

where 4 is the total material handling cost. A candi- 
date solution with a small total material handling cost 
will lead to a chromosome with a large fitness value. 
As a result, the chromosome is given a greater 
chance to be selected as a parent chromosome. 

Selection, crossover and mutation operators 

Selection operator 
The selection operator is used to guide the search 
direction of the genetic search process. It leads to an 
overall improvement of the chromosomes’ cost 

Table 2 Material handling cost ($ per trip) and effective 
capacities of machines 

Effective 
komiT0 2 3or4 5 6 or 7 capacity (min) 

1 0 20 0 0 150 
2 10 0 0 100 
3 or 4 20 10 70 
5 10 120 
6 or 7 70 
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Table 3 Machine loading plans 

FCFS SPTF LPTF 

Part Unit proc. Prod. Part Unit proc. Prod. Part Unit proc. Prod. 
type time (min) vol. m twe time (min)’ vol. m type time (min) vol. 

Part I 6 20 1 Part 1 20 1 Part 1 6 20 
Part 2 5 10 2 Part 2 z 10 2 Part 2 5 10 
Part I 2 20 3 Part 1 2 20 3 Part 2 8 8 
Part 2 8 3 Part 2 8 3 4 Part 2 8 2 
Part 2 8 7 4 Part 2 8 7 Part 1 2 20 
Part 1 5 20 5 Part 3 10 5 Part 1 5 20 
Part 3 2 10 Part 1 

5” 
20 Part 3 2 10 

Part 2 5 10 6 Part 3 z 10 6 Part 2 5 10 
Part 3 4 5 Part 2 6 Part 3 4 5 
Part 3 4 5 7 Part 2 5 4 7 Part 3 4 5 

performance as the search proceeds. The potential 
chromosomes with higher fitness values are given 
higher chances to be selected as parents to breed new 
chromosomes. The parent chromosomes are placed 
in a mating pool where crossover and mutation take 
place. In each generation, the worst I_P x RI chromo- 
somes are removed from the current population in 
accordance with their fitness values. The best LP x RI 
chromosomes are then duplicated and inserted into 
the same population to replace the rejected chromo- 
somes. Afterwards, the selection operator is applied 
to select parent chromosomes from the population in 
accordance with the selection parameter, ASelect, of the 
chromosome. The selection parameter, ASelect, of a 
chromosome is defined as: 

where CD and I: 0 are the fitness values of the 
chromosome, and the sum of fitness values over the 
entire population respectively. 

In this paper, the selection scheme of the 
remainder stochastic sampling with replacement 
proposed by Brindle= is adopted. In this case, the 
expected number of chromosomes, eP, for each 
chromosome in the mating pool is calculated by: 

eP = ASelect x P (5) 

Chromosomes are then reproduced and placed into 
the mating pool with the number of samples equal to 
the integer part of their eP values. The fractional parts 
of the eP values are used to calculate weights in the 
traditional roulette wheel selection procedure with 
the probability of selection, Pselect, for each chromo- 
some defined as: 

P Select = frac(e,)/ C frac(e,) (6) 

where frac(e,) is the fraction part of the eP value, and 
C frac(e,) is the sum of the fraction parts of the eP 
values over the entire population. The chromosomes 
are then randomly selected in accordance with their 
own probabilities of selection, Pselect, to fill the 
remaining slots in the mating pool. 

Crossover operator 
In general, the crossover operator transfers a portion 
of genetic codes between two parent chromosomes 
selected from the mating pool. It leads to an exploita- 
tion of the solution space by introducing variations to 
the parent chromosomes. Firstly, a pair of parent 
chromosomes is chosen from the mating pool without 
replacement. The probability of applying the cross- 
over operator to these two chromosomes is called the 
probability of crossover, PC,,,,. If the decision is not to 
cross the chromosomes, they will be cloned to 
produce a pair of offspring chromosomes, where the 
offspring chromosomes are identical to their parents. 
Otherwise, the parent chromosomes will be crossed 
to produce two offspring chromosomes by using the 
crossover operator. In this paper, a new crossover 
operator is proposed, and a simple example is used to 
illustrate its operation. In order to facilitate the 
presentation, the pairs of parent and offspring 
chromosomes are identified as (SZ, S2) and (Cl, C2) 
respectively. Consider a pair of parent chromosomes 
(SI, S2) shown below: 

1 4 7 4 1 6 
._____ .____. 

SI= 8: 2 5: s2= 2: 5 7; 

3:4 9: 9:3 8: 
.____d .____a 

Firstly, a cutting section is chosen at random. The 
genes bounded within the cutting section, i.e., (2, 5, 6, 
9) in SZ, and (5, 7, 3, 8) in S2, are exchanged, so that 
a portion of genetic codes from SI is transferred to 
S2, and vice versa. The structures of the resultant 
chromosomes then become: 

1 4 7 4 1 6 
Sl’= 8:5-x S2’= 2:-2-j: 

3j3 8: 
--__-’ 

916 9: 
____! 

At this stage, several genes are found to exist in 
more than one position in the resultant chromosomes 
(e.g., 3, 7, and 8 in SI ’ and 2, 6 and 9 in S2’). These 
genes are termed as repeated genes in the following 
discussion. Indeed, each pair of repeated genes 



118 A genetic algorithm for facility layout problems: K.L. Mak et al. 

indicates that the machine represented by the value 
of that pair of genes has been allocated in two 
different machinery locations in the layout plan. In 
this connection, modification of the layout plan is 
necessary before it can be accepted. Since SI’ is 
produced by changing the genes in SI from 2 to 5, 5 
to 7, 6 to 3, and 9 to 8, a backward replacement 
procedure can be implemented to change the values 
of those repeated genes outside the cutting section 
from 3 to 6, 7 to 2 (the combined result of changing 
from 7 to 5 and then 5 to 2) and 8 to 9. Similarly, the 
repeated genes outside the cutting section in S2’ can 
also be replaced by changing 2 to 7, 6 to 3, and 9 to 
8. Thus the offspring chromosomes become: 

1 4 2 4 1 3 
-----, (_____ 

Cl= 9; 5 7: c2= 7; 2 5: 

6: 3 8: 8:6 9: 
.____4 .____A 

Mutation operator 

The mutation operator is used to safeguard the 
search process from premature convergence to a local 
optima. It is an immediate operation that follows the 
crossover operation. It attempts to rearrange the 

Table 4 Flow of materials between machines (number of trips per 
period) 

FkomRo 2 3 4 5 6 7 8 9 

100 3 0 6 35 190 14 12 
6 8 109 78 1 1 104 

0 17 100 
10: 1 

1 31 
247 178 1 

1 10 1 79 
0 

b : 
12 

structure of a chromosome at random. The 
probability of mutating a single gene is called the 
probability of mutation, PMUtate, which is usually a 
small number. For each gene in a chromosome, an 
arbitrary choice is made to decide whether the 
mutation operation is performed or not. If the 
decision is not to perform the mutation operation, 
the gene will be kept unchanged. Otherwise, the gene 
is mutated by swapping its contents randomly to the 
other gene, on the condition that neither of the 
genes’ contents is equal to -1. If the content of a 
gene is equal to -1, it means that the gene is repre- 
senting a restricted area, and no mutation should be 
allowed. The mutation operation is then applied to 
the next gene, and the entire process is repeated, 
until all genes in the chromosome are tried. 

Numerical examples 

Example from Chan and Tank (1994) 

The effectiveness of the proposed approach can be 
conveniently illustrated by using numerical examples. 
The first example is taken from Chan and Tansr?, 
and the system specifications are presented in 
Tables 4 and 5. The plant configuration layout is a 3 
by 3 grid. In order to obtain a robust design, a certain 
percentage of chromosomes with high fitness values 
will be retained as the chromosomes for the next 

Table 5 Material handling cost between machines ($ per trip) 

From/To 2 3 4 5 6 7 8 9 

1 1 2 3 3 2 
2 12 4 7 5” 8 : 5 
3 5 9 1 1 1 
4 1 1 : 4 6 
5 1 1 1 1 
6 1 4 6 

: 
7 1 

1 

1 9 8 3 9 2 8 9 1 

7 3 4 4 8 5 5 2 6 

:.:::‘... 
Figure 3 Optimal facility layouts for the Chan and Tansri ** example. 
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generation. The general guideline proposed by Chan 
and Tansri*’ is adopted to determine the values of the 
five genetic parameters. The genetic parameters are 
the population size, P, the generation size, G, the 
percentage of replication of well-performed chromo- 
somes in each generation, R, the probability of cross- 

over, Pc,osa. and the probability of mutation, PMutate. 

Nineteen sets of experiments are conducted to 
determine an appropriate combination of the popula- 
tion size, P, and the generation size, G. In order to 
evaluate the performance of the search processes in 
connection with the different combinations of the 
population and generation sizes, the experimental 
results are compared with the global optimal 
solutions. The exhaustive search method is applied to 
determine the global optimal solutions, and eight 

Table 6 The experimental settings for different combinations of 
the population and generation sizes 

Expt. P G No. of trials 

1 20 10 200 
2 40 10 400 
3 100 10 1000 
4 200 10 2000 
5 500 10 5000 
6 20 20 400 
7 40 20 800 
8 100 20 2000 
9 200 20 4000 

10 20 40 800 
11 40 40 1600 
12 100 40 4000 
13 200 40 8000 
14 20 100 2000 
15 40 100 4000 
16 100 100 10000 
17 20 200 4000 
18 40 200 8000 
19 10 500 5000 

R = 0.5%, P, r(,\\ = 0.6 and I’,,,,,,, = 0.001. 

% of exploration 

0.0551 
0.1102 
0.2756 
0.5511 
1.3779 
0.1102 
0.2205 
0.5511 
1.1023 
0.2205 
0.4409 
1.1023 
2.2046 
0.5511 
1.1023 
2.7557 
1.1023 
2.2046 
1.3779 

optimal machine layouts are obtained. Figure 3 shows 
the optimal machine layouts, and the corresponding 
material handling cost is $4818 (this result is different 
from that of Chan and Tansr?, which is probably due 
to some printing errors in their paper). In addition, 
three widely used crossover operators are also 
included in these experiments. They are the partially 
mapped crossover (PMX)‘h, the order crossover 

(OXY’, and the cycle crossover (CX)“. These three 
crossover operators are originally proposed to solve 
travelling salesman problems. Recently, Chan and 
Tansri*’ have attempted to use these operators to 
solve facility layout problems, and have reported that 
the PMX operator did provide excellent results. It is 
therefore appropriate to include these three opera- 
tors in the experiments, in order to verify the effec- 
tiveness of the proposed crossover operator. To 
ensure fairness, the same set of selection and 
mutation operators are used to evaluate the perform- 
ance of the crossover operators. 

In general, an increase in the sizes of population 
and generation can produce better solutions, since 
the number of sampling solutions from the solution 
space is enlarged. However, the computational effort 
in searching the space will also increase, which is 
contradictory to the original objective of using 
genetic algorithms to obtain reasonable solutions by 
minimal evaluations. Hence, it is appropriate to limit 
the total number of evaluations in each experiment to 
less than 3% of the total number of solutions in the 
solution space. In this example, there are 362880 (9!) 
possible solutions in the solution space, and thus the 
maximum number of evaluations should be less than 
10886. Table 6 lists the suggested combinations of the 
population and generation sizes. Each experiment is 
run 10 times with the genetic parameters of R = 5%, 

Table 7 The experimental results for different combinations of the population and generation sizes 

Proposed crossover PMX ox CX 

Expt. Best Avg. # Best Avg. # Best Avg. # Best Avg. # 

1 5233 5504.4 0 4938 5434.8 0 5307 5480.9 0 5026 5622.2 0 
2 5040 5286.7 0 5039 5263.8 0 5032 5266.5 0 5133 5409.8 0 
3 4818 5024.8 1 4938 5164.9 0 4992 5216.1 0 5020 5201.7 0 
4 4818 4891.4 2 4818 4966.8 2 4818 5046.5 1 4818 5086.9 1 
5 4818 4833.2 7 4818 4892.3 5 4818 4947.7 1 4818 4911.4 1 
6 5225 5481.2 0 4938 5402.1 0 5307 5480.9 0 SO26 5589.6 0 
7 4927 5174.6 0 4992 5184.6 0 5032 5198.2 0 5133 5402.1 0 
8 4818 4889.1 4 4818 4991.7 2 4927 5125.8 0 4818 5145.2 1 
9 4818 4846.5 5 4818 4919.8 2 4818 4960.7 1 4818 4973.8 3 

10 5225 5462.2 0 4938 5402.1 0 5307 5471.8 0 5026 5566.5 0 
11 4927 5163.8 0 4992 5180.7 0 5014 5182.0 0 5133 5378.7 0 
12 4818 4871.4 4 4818 4919.5 3 4862 5006.7 0 4818 5090.5 1 
13 4818 4840.0 5 4818 4887.9 4 4818 4894.7 4 4818 4902.9 4 
14 5225 5453.0 0 4938 5337.0 0 5020 5326.9 0 5026 5471 .O 0 
15 4818 5141.6 1 4927 5122.4 0 4872 5156.2 0 5039 5304.5 0 
16 4818 4866.0 5 4818 4863.9 4 4818 4912.5 2 4818 4988.9 2 
17 4818 5303.9 1 4938 5224.6 0 4862 5229.4 0 4862 5266.3 0 
18 4818 5141.4 1 4862 5088.4 0 4818 5061.3 1 4862 5129.9 0 
19 4818 5184.3 1 4818 5166.1 1 4818 5115.5 1 4862 5272.0 0 
Total 37 23 11 13 

Best = The material handling cost of the best solution among the 10 runs. Avg. = The average of the best material handling costs among the 
10 runs. # = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. 
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‘lhble 8 The experimental settings for studying the effects of 

P cross = 0.6, and PM,,,,, = 0.001. The experimental 
results (Table 7) are expressed in terms of: 

1. 

Expt. R (%I Expt. crnaa P Expt. P Mutate 
? 
L- 0 27 0.5 33 0.000 

2 28 0.6 0.001 
22 5” :z 0.7 ;; 0.003 3. 
23 0.8 36 0.005 
24 6 31 0.9 37 0.010 

The material handling cost of the best solution 
among the 10 runs. 
The average of the best material handling costs 
among the 10 runs. 
The number of runs needed to obtain one of the 
eight optimal solutions. 

2.5 8 
26 10 

32 1.0 38 0.030 
39 0.050 

In Table 7, the number of successful runs required 
to obtain one of the eight optimal solutions among 

‘lhble 9 The experimental results for studying the effect of changing R 

Proposed crossover PMX ox cx 

Expt. Best Avg. # Best Avg. # Best Avg. # Best Avg. # 

4818 5043.0 2 5065 5218.7 5065 5218.7 4978 5122.9 0 
4818 4946.1 4 4872 5083.1 

8 
4872 5083.1 4818 5033.2 1 

22 4818 4856.0 4 4862 5059.5 0 4862 5059.5 4818 5092.5 1 

23 4818 4889.1 4 4818 4991.7 2 4927 5125.8 

8 

4818 5145.2 24 4818 4936.9 4 4818 5048.6 4818 5048.6 4872 5165.4 : 

:: 4818 4818 4962.7 4943.6 3 1 4938 4818 5080.4 5052.6 

: 

1 4938 4818 5080.4 5052.6 

:, 

1 4938 4938 5177.8 5133.8 0 0 
Total 22 4 2 3 

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The genetic parameters are 
P = 100, G = 20, PC_, = 0.6 and PMUtatP = 0.001. 

‘lhble 10 The experimental results for studying the effect of changing PC,.. 

Proposed crossover PMX ox cx 

Expt. Best Avg. # Best Avg. # Best Avg. # Best Avg. # 

27 4818 4970.2 2 4818 5094.8 1 4927 5126.9 0 5039 5189.5 0 
28 4818 4856.0 4 4818 4991.7 2 4818 5048.6 1 4818 5033.2 1 

:; 4818 4818 4898.7 4905.6 : 4818 4818 5011.3 4979.3 : 4818 4872 5061.9 5070.3 :, 4818 4862 5026.3 5061.2 ?I 
z: 4818 4818 4942.7 4929.0 5 1 4818 4818 4992.4 4983.5 2 1 4862 4818 5030.9 5014.8 0 1 4818 4862 5003.5 4993.5 0 3 

Total 15 10 3 7 

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The values of the genetic 
parameters for the different crossover operators are: the proposed crossover operator: P = 100, G = 20, R = 4% and PM,,,,, = 0.001; the 
PMX operator: P = 100, G = 20, R = 5% and PM,,.,, = 0.001; the OX operator: P = 100, G = 20, R = 6% and PM,,,,, = 0.001; the CX 
operator: P = 100, G = 20, R = 2% and PMutate = 0.001. 

‘Lgble 11 The experimental results for studying the effect of changing PM”,, 

Expt. 

Proposed crossover 

Best Avg. 

PMX ox cx 

# Best Avg. # Best Avg. # Best Avg. # 

33 4818 4887.8 3 4818 4983.9 3 4862 5086.7 0 4818 5087.1 1 

z: 4818 4818 4856.0 4961.6 4 2 4818 4818 4979.3 4951.6 2 1 4818 4818 5059.0 5014.8 1 
: 

4818 4818 5012.2 4993.5 3 1 
36 4818 4887.8 2 4862 5013.7 0 4872 5117.4 4818 4994.1 2 
37 4818 4881.2 2 4818 4987.5 1 4862 5073.8 0 4818 4993.3 1 

z: 4818 4818 4895.8 4944.6 4 2 4818 4862 4985.7 5029.3 0 1 4872 4818 5014.9 5010.6 1 4818 4818 4986.9 4955.7 3 1 
Total 19 8 Y 12 

# = No. of runs which yielded one of the eight optimal solutions. The optimal material handling cost is $4818. The values of the genetic 
parameters for the different crossover operators are: the proposed crossover operator: P = 100, G = 20, R = 4% and Poe,, = 0.6; the PMX 
operator: P = 100, G = 20, R = 5% and P,-,, = 0.8; the OX operator: P = 100, G = 20, R = 6% and PC_ = 1.0; the CX operator: P = 100, 
G = 20, R = 2% and PC,"* = 0.9. 
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the operators PMX, OX, and CX are 23, 11, and 13, 
respectively. The results agree with those provided by 
Chan and Tansr?‘, except for the OX operator. 
Indeed, the results correlate with the original expec- 
tations, since the PMX operator performs better than 
the OX and CX operators in solving facility layout 
problems. However, the proposed crossover with 37 
successful runs performs even better than the PMX 
operator. In addition, the proposed crossover 
operator also works well in a number of combinations 
of the population and generation sizes, including 
(P = 500,G = lo), (P = 100,G = 20), and (P = 200, 
G = 20), etc. The PMX, OX, and CX operators 

Table 12 The optimal values of the genetic parameters 

P 
G 
R 
PC,,, 
P,“,,,, 

Proposed 
crossover 

200 
40 

4 
0.6 
0.001 

PMX ox cx 

200 200 200 
40 40 40 

5 6 2 
0.8 1.0 0.9 
0.001 0.001 0.030 

8000.00 

6500.00 

6 
8 

$ 
1 
a 
3 6000.00 

& 

; 

2 

5500.00 

provide good results only in a few cases. This prelimi- 
nary result shows that the proposed crossover 
operator is more robust than the PMX, OX, and CX 
operators in solving facility layout problems. 

Sensitivity analysis of the R values 
Besides the population and generation sizes, the 
solution quality can also be affected by the 
percentage of replication of well-performed chromo- 
somes in each generation, R, the probability of cross- 

over, PC,,,,, and the probability of mutation, PMUtat,. 
The effects of these genetic parameters on the 
solution quality are studied in accordance with the 
experimental settings depicted in Table 8. In 
conducting experiments (20-26), each experiment is 
run 10 times with the genetic parameters P = 100, 
G = 20, Pcross = 0.6, and PMUtat, = 0.001. Table 9 
presents the experimental results. The results indicate 
that the proposed crossover operator outperforms the 
PMX, OX, and CX operators in terms of the number 
of successful runs. In addition, the proposed cross- 
over operator works well in a wide range of R, which 
implies that it is insensitive to the change of R. Once 

+Proposed crossover 

-x - PMX 

*ox 

-n-cx 

0 5 10 

Figure 4 Results of the generation-average total cost. 

15 20 25 30 35 40 

Generations 
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again, it shows that the proposed crossover operator 
is quite vigorous. 

Sensitivity analysis of the P,,,, values 
The best values of R for each crossover operator are 
then used to study the effect of changing P,-,oss on the 
solution quality. The selected values of R for the 
proposed crossover operator, and for the PMX, OX 
and CX operators are 4%, 5%, 6% and 2% respec- 
tively. Each of the experiments (27-32) is run 10 
times, with the genetic parameters P = 100, G = 20 

and PMutate = 0.001. The experimental results in 
Table 10 show that the proposed crossover operator 
works well at probability 0.6 and 0.9. However, it 
seems that the proposed crossover operator works 
better at probability 0.6, since its corresponding 
average value ($4856.0) is less than that obtained at 
probability 0.9 ($4942.7). The best values of the 
probability of crossover for the PMX, OX, and CX 
operators are 0.8, 1.0, and 0.9, respectively. These 
results are slightly different, when compared with 
Chan and Tansri**, which is probably due to the 

5500.00 

5400.00 

5200.00 

4800.00 

4700.00 

4600.00 

4500.00 

difference in the selection operation. Both the 
proposed crossover operator and the PMX operator 
have successfully located the global optimal solution 
in all experiments. However, the success rate of the 
proposed crossover operator is higher than that of 
the PMX operator, which reveals that the proposed 
crossover operator is more reliable. 

Sensitivity analysis of the P,,,,,,e values 
The probabilities of crossover, PC,,,,, for the proposed 
crossover operator, and for the PMX, OX, and CX 
operators are then fixed at 0.6, 0.8, 1.0, and 0.9, 
respectively. When joined with their respective values 
of R hxed at 4%, 5%, 6%, and 2%, the effect of 

changing PMutate on the solution quality is studied. 
Experiments (33-39) are conducted in such a way 
that each experiment is run 10 times with the genetic 
parameters P = 100 and G = 20. Table II lists the 
results of the experiment, and again the proposed 
crossover operator outperforms the PMX, OX, and 
CX operators. Although it seems that the PMX 
operator has a greater number of successful runs at 
probability 0.000, the best value of the probability of 

+ Proposed crossover 

-x - PMX 

*ox 

-G-cx 

I I I I I 

0 5 10 15 20 25 30 35 40 
Generations 

Figure 5 Results of the best-of-generation total cost. 
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mutation should be 0.001, since its corresponding 
average value ($4979.3) is less than that obtained at 
probability 0.000 ($4983.9). The best values of the 
probability of mutation for the proposed crossover 
operator, PMX, OX, and CX are 0.001, 0.001, 0.001, 
and 0.030, respectively. The proposed crossover and 
the CX operators can also locate the global optimal 
solution in all the experiments. Indeed, the CX 
operator works surprisingly well with the different 

values of PMUtate. The CX operator is shown to outper- 
form even the PMX operator, if its parameter 
settings are tuned carefully. However, this also 
becomes the CX operator’s drawback, because this 
implies that its performance is sensitive to the param- 
eter settings. 

Cost performance of the various crossover operators in 
a search process 

Table 13 Part list and production data 

Pl 

Production routing 22-1-13-21 
Unit op. proc. time* 2-3-4-l 
Production volume 130 

P2 

3-20-24 
l-l-2 
150 

P3 P4 

14-7-23-24 15-6-18-8-12 
4-4-3-4 l-3-3-2-4 
125 145 

P5 

15-6-18-8-12-5 
l-l-3-3-2-3 
65 

P6 P7 P8 P9 PlO 

Production routing 
Unit op. proc. time* 
Production volume 

9-17-10 9-17-10 4-16 22-1-13-21 2-11-19-5-21 
2-2-l 2-l-l l-l 4-2-4-4 2-3-3-3-l 
78 95 160 85 105 

Pll P12 P13 P14 P15 

Production routing 
Unit op. proc. time* 
Production volume 

3-20 3-20 2-11-19 2-11-19-5 3-20 
l-3 l-l l-l-2 3-4-3-4 3-3 
130 140 150 185 78 

P16 P17 P18 Pl9 P20 

Production routing 
Unit op. proc. time* 
Production volume 

22-1-13-21 1-13-22 15-6-18-8-12 4-16 10-17-12 
l-3-2-2 2-2-3 2-l-4-3-2 l-4 2-3-4 
95 160 85 105 130 

P21 P22 P23 P24 P25 

Production routing 
Unit time* op. proc. 
Production volume 

4-16 2-5-11-19 3 20-12 7- 14-23 
3-4 3-3-2-3 2 2-4 4-l-2 
105 130 140 150 185 

P26 P27 P28 P29 P30 

Production routing 
Unit op. proc. time* 
Production volume 

15-6-18-8-10 15-6-18-8-12 4 9-17 6-18-8-12 
4-2-2-2-l 3-3-3-2-3 2 3-l 2-4-2-l 
145 65 78 95 160 

P31 P32 P33 P34 P35 

Production routing 
Unit time* op. proc. 
Production volume 

3-20-17 14-7-23-24-16 22-1-13-21-2 3-20 11-19-5 
2-4-2 4-4-4-2-2 2-3-4-2-4 l-4 l-3-2 
85 105 130 150 125 

P36 P37 P38 P39 P40 

Production routing 
Unit op. proc. time* 
Production volume 

20-12-21 16-11-14 4-16 4-16 l-13-19 
4-2-2 3-l-4 l-l l-2 l-2-4 
145 65 78 95 160 

*It is assumed that the unit operation processing time for each operation is the same in the first study. The figures listed here are used in 
the second study only. 

Table 14 Results of solvine the facility layout Droblem 

Crossover operator 

The proposed crossover 
PMX 
ox 
cx 

Best (30 runs) 

12982 
14947 
22 406 
14717 

Avg. (30 runs) 

15 087.7 
18355.9 
24301.7 
17216.5 

Worst (30 runs) 

18657 
20654 
26 926 
20654 

Successful hits 

11 
0 
0 
0 

The total material handling cost of the best solution obtained among all the runs is $12982. Successful hits: the number of runs that have hit 
the best solution obtained. 
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The general cost performance of the various cross- 
over operators in a search process is studied with the 
respective optimal values of the genetic parameters 
shown in Table 12, and the results are presented in 
Figures 4 and 5. In Figure 4, the generation-average 
total cost is plotted against the generation number, 
whereas Figure 5 shows the behaviour of the corre- 
sponding best-of-generation total cost. Both the total 
costs converge very rapidly in just a few generations 
for the OX and CX operators. Indeed, these tvvo 
operators have resulted in a fairly smooth cost 
performance. In particular, there are no sudden 
changes in the best-of-generation total cost when the 
search processes start to converge. However, it is 
important to note that such an early premature 
convergence may lead to a local optimal solution. 
The cost performance of the PMX operator, on the 
other hand, is less smooth. Some sudden changes in 
the best-of-generation total cost are detected as the 
generation advances. These changes, however, 
provide a means to enable the total cost to escape 
from being trapped in a local optimum, and to 
progress to become the global optimal solution 
eventually. However, the search process is time- 
consuming, in this case, because its convergence is 

the slowest. Figures 4 and 5 show that the total costs 
still have not reached their corresponding steady state 
after 40 generations. In fact, this operator is expected 
to perform better if the search process is allowed to 
continue with more generations. The proposed cross- 
over operator exhibits similar behaviour in the cost 
performance as the PMX operator. Figures 4 and 5 
reveal that the changes in the total costs begin to 
diminish after 30 generations. According to Figure 5, 
the best-of-generation total cost converges rapidly in 
the beginning of the search, and the global optimal 
solution has already been located at as early as the 
11th generation. Among all the crossover operators, 
the proposed crossover operator is the only one that 
can successfully locate the global optimal solution. 
The proposed operator is therefore proved to be 
effective and efficient in solving facility layout 
problems. 

The results of the preliminary study show that the 
proposed crossover operator outperforms the PMX, 
OX, and CX operators in solving facility layout 
problems. In addition, the results of the study listed 
in Table 12 also suggest the appropriate values of the 
genetic parameters for the proposed crossover, and 
also the PMX, OX, and CX operators. 

9 1 20 1 23 1 5 1 13 1 1 

17 12 7 19 21 

10 8 14 11 2 

18 6 15 

(a) No constraint imposed (total material 
handling cost = $12982). 

* 24 20 7 3 29 

(c) Under the SPTF policy (total material (d) Under the LPTF policy (total material 
handling cost = % 15709) handling cost = $14946) 

1 15 1 24 1 20 1 17 t 19 1 11 I 
I 

(b) Under the FCFS policy (total material 
handling cost = $15545). 

3 20 12 21 8 27 

Figure 6 The best facility layouts obtained under different machine loading policies for the Kazerooni et al. ” example. 
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Example from Kazerooni et al. (1996) 

The proposed approach is again applied to solve 
another facility layout problem excerpted from 
Kazerooni et aZ.*O. If the proposed approach is testi- 
fied to be sturdy, the values of the genetic parameters 
obtained in the previous study can still provide good 
results in solving this facility layout problem. In this 
paper, the best routing configuration determined by 
Kazerooni et aI.” is used as an input for the proposed 
approach. Since the unit operation processing time 
and the effective capacities of machines are not 
provided in Kazerooni et aE.*O, it is assumed that the 
unit operation processing time for each operation is 
the same, and there is no capacity constraint for the 
machines. In addition, the material handling costs are 
also assumed to be the same among machines. 
Table 13 presents the part list and the corresponding 
production data of the parts. Since the problem 

Table 15 Effective capacities of the different types of machines 

Machine types Effective capacities 

1 1800 
2 2000 
3 1800 
4 1400 
5 2000 
6 1400 
I 1400 
8 1600 
9 1000 

10 1000 
11 1800 
12 2000 
13 1800 
14 1800 
1.5 1400 
16 1800 
17 1200 
18 1400 
19 1800 
20 2000 
21 1800 
22 1800 
23 1400 
24 1200 

needs to locate 24 types of machines (m = 1,2,. . . ,24) 
in a 5 by 6 machinery location grid, there are 
2.65 x 103* (30!) possible solutions in the solution 
space. The determination of the global optimal 
solution by using the exhaustive search method is 
impossible in this case. Hence, the proposed 
approach is applied to solve the problem with the 
genetic‘ parameters P= 200, G =40, R = 4%, 
P Cross = 0.6, and PMutate = 0.001. Since there is no 
capacity constraint for the machines, the total 
material handling cost is, therefore, not affected by 
the machine loading policy. For the sake of 
comparison, the three widely used crossover opera- 
tors, namely, the PMX, OX, and CX operators, are 
also applied to solve the problem with the respective 
optimal values of the genetic parameters shown in 
Table 12. Thirty runs of genetic search are conducted 
for each crossover operator, and the results are 
shown in Table 14. 

Table 14 shows that the proposed crossover 
operator again outperforms all the three crossover 
operators. As a matter of fact, the results show that 
during the 30 runs, the PMX, OX and CX operators 
cannot even hit the best solution obtained from the 
proposed approach. By using the optimal values of 
the genetic parameters, the CX operator once again 
obtains a better solution than those obtained by the 
PMX and OX operators. Among the 30 runs, the 
proposed crossover operator is observed to be able to 
hit the best solution obtained 11 times successfully. 
This result is reasonable, because the proposed cross- 
over operator is believed to be less sensitive to the 
values of genetic parameters when compared to the 
other three crossover operators. In this connection, 
the proposed crossover operator can still have a good 
chance to locate a good solution, even though the 
values of the genetic parameters are not specifically 
tuned for this problem. The best facility layout 
obtained by using the proposed crossover operator is 
presented in Figure 6(a). 

The problem is now re-visited when there are 
capacity constraints for the machines. In this case, the 

Table 16 Results of solving the facility layout problem with imposed constraints under various machine loading policies 

Crossover operator Best (30 runs) Avg. (30 runs) Worst (30 runs) Successful bits 

FCFS 
The proposed crossover 15 545 16350.3 18432 13 
PMX 16607 19 763.4 24037 0 
ox 23 807 25 165.1 26337 0 
cx 15 638 18 136.9 19642 0 

SPTF 
The proposed crossover 15 709 16757.9 18762 12 
PMX 17092 20621.4 26337 0 
ox 23 285 24 807.4 26711 0 
cx 16661 18789.3 21624 0 

LPTF 
The proposed crossover 14946 15 799.3 17603 16 
PMX 15 283 17269.9 19622 0 
ox 24758 26 130.5 27 249 0 
cx 15 286 17839.4 19762 0 

The total material handling costs of the best solutions obtained under the machine loading policies of FCFS, SPTF and LPTF are $15545, 
$15 709 and $14946, respectively. Successful hits: the number of runs that have hit the best solution obtained. 



126 A genetic algorithm for facility layout problems: K.L. Mak et al. 

Table 17 The production plan of the best solution obtained under the machine loading policy of LPTF 

Production routing Production volume Production routing Production volume 

Pl 22-1-13-21 130 P21 4-16 105 
P2 3-20-24 150 P22 2-5-11-19 101 
P3 14-7-23-24 125 2-5-11-28 29 
P4 15-6-18-8-12 145 P23 3 140 
P.5 15-6-27-8-25-5 65 P24 20-12 150 
P6 9-17-10 78 P25 7-14-23 185 
P7 9-17-10 95 P26 15-6-18-8-10 145 
P8 4-16 160 P27 15-6-27-8-25 65 

P9 22-1-26-21 85 P28 PlO 2-11-28-5-21 105 P29 z-17 ;: 
Pll 3-20 123 P30 6-18-8-12 160 

3-29 7 P31 3-29-17 85 
P12 3-29 140 P32 14-7-23-24-16 105 
P13 2-11-19 150 P33 22-1-13-21-2 130 
P14 2-U-19-5 185 P34 3-20 150 
P15 3-29 z P35 11-28-5 125 
P16 22-1-13-21 P36 20-12-21 145 

22-1-26-21 35 P37 16-11-14 65 
P17 1-13-22 160 P38 4-16 78 
P18 15-6-18-8-25 8 P39 4-16 95 

15-6-27-8-25 77 P40 1-131-19 160 
P19 4-16 105 
P20 2-5-11-19 92 

2-5-11-28 38 

Machines m = 12,25 belong to the machine of type 12, machines M = 13,26 belong to the machine of type 13, machines m = 18,27 belong to 
the machine of type 18, machines m = 19,28 belong to the machine of type 19, and machines m = 20,29 belong to the machine of type 20. 

unit operation processing time for each operation is 
generated by using random numbers as shown in 
Table 13. In addition, the effective capacities of the 
different types of machines are shown in Table 15. 

Figure 6(b-d) illustrate the plant configuration layout, 
where the symbol ‘*’ represents a restricted area. 
Moreover, the location on the upper left corner is a 
reserved machinery location, where only type 4 
machine is allowed to be located. By using eqn (l), 
the number of each type of machines is calculated as 
Qm = 1 (m = 1,2,..., 24) except Qr2 = Q13 = Qls = 
Q19 = QZO = 2. Hence, a total number of 29 (M = Zz=, 

Q,) machines are required in the system. It is also 
assumed that the machines listed in each of the 
following brackets belong to the same machine type: 
(12, 25), (13, 26), (18, 27), (19, 28), and (20, 29). 
Three machine loading policies, namely, the First- 
Come-First-Serve (FCFS), the Shortest Processing 
Time First (SPTF), and the Longest Processing Time 
First (LPTF), are used to derive the optimal facility 
layout. The effects of these machine loading polices 
on the total material cost are also studied. Similarly, 
30 runs of genetic search are conducted for each of 
the four crossover operators (i.e. the proposed cross- 
over, PMX, OX and CX operators) for each machine 
loading policy, and the results are shown in Table 16. 

It can be noted that the proposed crossover operator 
outperforms the other crossover operators in all 
cases. The best facility layouts obtained under 
different machine loading policies are illustrated in 
Figure 6(b-d). In addition, Table 16 also reveals that 
the best facility layout obtained under the LPTF 
policy incurs the lowest total material handling cost. 
Table I7 presents the corresponding production plan. 

Table 16 also shows that the proposed crossover 
operator is very promising in solving the facility 

layout problem. The number of successful hits on the 
best solutions obtained under the FCFS, SPTF and 
LPTF policies are 13, 12, and 16, respectively. 
Furthermore, both the average and the worst 
solutions are very close to the best solution obtained 
under each machine loading policy. The computation 
time required to solve the problem genetically over 
40 generations is about 3.5 min on a Pentium-200 
based PC. The effectiveness and efficiency of the 
proposed crossover operator is again reinforced. 

Conclusion 

This paper has presented the use of genetic 
algorithms as a general methodology to solve facility 
layout problems. A mathematical model has been 
developed to examine the machines’ layout and the 
pattern of material flow for the typical job shop and 
flow shop manufacturing environments, and analysis 
has been presented to consider various practical 
aspects, such as the constraints of restricted areas and 
reserved machinery locations, and also the irregu- 
larity of the shapes of manufacturing plants, etc. A 
genetic approach has been proposed to derive the 
optimal machine layout which minimizes the total 
material handling cost. A new crossover operator has 
been introduced, and its effectiveness has been 
studied by using the benchmark problem excerpted 
from Chan and Tansr?. The cost performance of the 
proposed crossover operator has been compared with 
those of the partially mapped crossover (PMX), the 
order crossover (OX), and the cycle crossover (CX) 
operators. The results have shown that the proposed 
crossover operator is the best operator, scoring 
superior results to those obtained by the PMX, CX 
and OX operators. The same genetic approach has 
also been used to solve another facility layout 
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problem excerpted from Kazerooni et dzo with a 
much larger problem size. The results obtained by 
using the proposed crossover, PMX, OX and CX 
operators under three different machine loading 
policies have been compared. The results of the 
comparison have shown that the proposed approach 
is robust, and its success rate of hitting the best 
solution obtained is high. Indeed, the proposed 
approach provides a very effective means to solve 
facility layout problems. 
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